Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090502    DOI: 10.1088/0256-307X/31/9/090502
GENERAL |
The Interaction of Peregrine Solitons
WU Zhen-Kun1**, ZHANG Yun-Zhe2, HU Yi3, WEN Feng1, ZHANG Yi-Qi1, ZHANG Yan-Peng1
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049
2Institute of Applied Physics, Xi'an University of Arts and Science, Xi'an 710065
3Institute of Education, Taiyuan University, Taiyuan 030001
Cite this article:   
WU Zhen-Kun, ZHANG Yun-Zhe, HU Yi et al  2014 Chin. Phys. Lett. 31 090502
Download: PDF(764KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate the interaction of two in-phase and out-of-phase Peregrine solitons in a Kerr nonlinear medium, addressing both the cases of first- and second-order solitons. Upon adjusting the interval between the solitons, their interactions exhibit different properties. If the interval is sufficiently large, two Peregrine solitons will propagate individually and will not interact each other. However, if the interval is not very large, the Peregrine solitons will strongly interact and display varying behavior.
Published: 22 August 2014
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zhen-Kun
ZHANG Yun-Zhe
HU Yi
WEN Feng
ZHANG Yi-Qi
ZHANG Yan-Peng
[1] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 58 1054
[2] Erkintalo M, Genty G and Dudley J M 2009 Opt. Lett. 34 2468
[3] Bludov Yu V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[4] Efimov V B, Ganshin A N et al 2010 Eur. Phys. J. Spec. Top. 185 181
[5] Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503
[6] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[7] Shrira V I and Geogjaev V V 2010 J. Eng. Math. 67 11
[8] Kibler B, Fatome J et al 2010 Nat. Phys. 6 790
[9] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[10] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[11] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[12] Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Rev. A 80 043818
[13] Zhong W P, Beli? M R and Huang T 2013 Phys. Rev. E 87 065201
[14] Onorato M, Proment D, Clauss G and Klein M 2013 PLoS ONE 8 e54629
[15] Taha T R and Ablowitz M I 1984 J. Comput. Phys. 55 203
[16] Agrawal G P 2009 Nonlinear Fiber Optics 4th edn (Singapore: Academic Press)
[17] Ye F W, Kartashov Y V and Torner L 2007 Phys. Rev. A 76 033812
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 090502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 090502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 090502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 090502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 090502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 090502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 090502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 090502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 090502
Viewed
Full text


Abstract