Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090501    DOI: 10.1088/0256-307X/31/9/090501
GENERAL |
Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams
CAI Li-Qiang1,2,3**, WANG Li-Fang2,3, WU Ke2,3, YANG Jie2,3
1Department of Mathematics, Jilin University, Changchun 130012
2School of Mathematical Sciences, Capital Normal University, Beijing 100048
3Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100190
Cite this article:   
CAI Li-Qiang, WANG Li-Fang, WU Ke et al  2014 Chin. Phys. Lett. 31 090501
Download: PDF(438KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.
Published: 22 August 2014
PACS:  05.30.Fk (Fermion systems and electron gas)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Li-Qiang
WANG Li-Fang
WU Ke
YANG Jie
[1] Maeda T, Nakatsu T, Takasaki K and Tamakoshi T 2005 J. High Energy Phys. 0503 056
[2] Okounkov A, Reshetikhin N and Vafa C 2006 Unity Math. Prog. Math. 244 597
[3] Iqbal A 2002 arXiv:hep-th/0207114
[4] Aganagic M, Klemm A, Mari?o M and Vafa C 2005 Commun. Math. Phys. 254 425
[5] Okounkov A and Reshetikhin N 2003 J. Am. Math. Soc. 16 581
[6] MacMahon P A 1915 Combinatory analysis I, II (Cambridge: Cambridge University)
[7] Bressoud D M 1999 Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture (Cambridge: Cambridge University)
[8] Macdonald I G 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University)
Related articles from Frontiers Journals
[1] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 090501
[2] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 090501
[3] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 090501
[4] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 090501
[5] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 090501
[6] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 090501
[7] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 090501
[8] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams[J]. Chin. Phys. Lett., 2014, 31(07): 090501
[9] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 090501
[10] ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song, LI Shuai, SUN Ya-Jun, LIU Gui-Lin. Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field[J]. Chin. Phys. Lett., 2014, 31(03): 090501
[11] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 090501
[12] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 090501
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 090501
[14] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 090501
[15] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 090501
Viewed
Full text


Abstract