Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 055203    DOI: 10.1088/0256-307X/31/5/055203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Comparative Study on Excitation Temperature, Electron Temperature and Electron Density in an Atmospheric Argon Microwave Plasma
WANG Zhong**, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong
Department of Electrical Engineering, Tsinghua University, Beijing 100084
Cite this article:   
WANG Zhong, ZHANG Gui-Xin, LIU Cheng et al  2014 Chin. Phys. Lett. 31 055203
Download: PDF(880KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An infinite-volume of atmospheric argon microwave plasma is produced in the microwave plasma source based on the inductive coupling window-rectangular resonator under the input of the microwave power at 2.45 GHz. The excitation temperature of the plasma is studied by using the Boltzmann plot of Ar I lines in two different wavelength ranges while the electron temperature is researched by using line-to-continuum intensity ratio of Ar I lines. The electron density is compared by using the Stark broadenings of Ar I lines at 522.13 nm and 549.59 nm and Hβ line at 486.13 nm.
Published: 24 April 2014
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/055203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/055203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhong
ZHANG Gui-Xin
LIU Cheng
JIA Zhi-Dong
[1] Wang Z, Zhang G X, Liu C and Jia Z D 2014 Chin. Phys. Lett. 31 055202
[2] Verhoff B, Harilal S S, Freeman J R, Diwakar P K and Hassanein A 2012 J. Appl. Phys. 112 093303
[3] Sola A, Calzada M D and Gamero A 1995 J. Phys. D: Appl. Phys. 28 1099
[4] Bussiere W, Vacher D, Menecier S and Andre P 2011 Plasma Sources Sci. Technol. 20 045004
[5] Hofsaess D 1979 At. Data Nucl. Data Tables 24 285
[6] Menart J, Heberlein J and Pfender E 1996 J. Quant. Spectrosc. Radiat. Transfer. 56 377
[7] Calzada M D 2005 Mem. S. A. It. 7 198
[8] Laux C O, Spence T G, Kruger C H and Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[9] Pellerin S, Musiol K, Pokrzywka B and Chapelle J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3911
[10] Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
[11] Magdalena C, Milan S D and Sylvie S B 2005 Mem. S. A. It. 7 238
[12] Yubero C, Dimitrijevic M S, Garcia M C and Calzada M D 2007 SpectroChim. Acta Part. B 62 169
[13] Yubero C, Calzada M D and Garcia M C 2005 J. Phys. Soc. Jpn. 74 2249
Related articles from Frontiers Journals
[1] Zhong-Zhen Wu, Shu Xiao, Sui-Han Cui, Ricky K. Y. Fu, Xiu-Bo Tian, Paul K. Chu, Feng Pan. Origin of Initial Current Peak in High Power Impulse Magnetron Sputtering and Verification by Non-Sputtering Discharge[J]. Chin. Phys. Lett., 2016, 33(07): 055203
[2] Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan, Shang-Sheng Li, Ying Wang, Xiao-Peng Jia, Hong-An Ma. B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2016, 33(02): 055203
[3] YU Yong-Hao, WANG Lang-Ping, WANG Xiao-Feng, JIANG Wei, CHEN Qiong. Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation[J]. Chin. Phys. Lett., 2015, 32(08): 055203
[4] SHI Yan-Chao, LI Jia-Jun, LIU Hao, ZUO Yong-Gang, BAI Yang, SUN Zhan-Feng, MA Dian-Li, CHEN Guang-Chao. Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 055203
[5] WANG Zhong, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong. Spectroscopic Diagnostics of Atmospheric Argon Microwave Plasma Based on an Inductive Coupling Window-Rectangular Resonator[J]. Chin. Phys. Lett., 2014, 31(05): 055203
[6] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 055203
[7] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 055203
[8] LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges[J]. Chin. Phys. Lett., 2009, 26(8): 055203
[9] LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 055203
[10] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 055203
[11] SHANG Wan-Li, WANG De-Zhen. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2007, 24(7): 055203
[12] LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System[J]. Chin. Phys. Lett., 2006, 23(12): 055203
[13] OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2004, 21(7): 055203
[14] JIANG Zhong-He, HU Xi-Wei, LIU Ming-Hai, GU Cheng-Lin, PAN Yuan. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge[J]. Chin. Phys. Lett., 2003, 20(6): 055203
[15] YIN Zeng-Qian, DONG Li-Fang, CHAI Zhi-Fang, LI Xue-Chen, WANG Long. Temporal Behaviour of Micro-discharge in Dielectric Barrier Discharges[J]. Chin. Phys. Lett., 2002, 19(10): 055203
Viewed
Full text


Abstract