CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Germanium PMOSFETs with Low-Temperature Si2H6 Passivation Featuring High Hole Mobility and Superior Negative Bias Temperature Instability |
WANG Hong-Juan1, HAN Gen-Quan1**, LIU Yan1**, YAN Jing1, ZHANG Chun-Fu2, ZHANG Jin-Cheng2, HAO Yue2 |
1Key Laboratory of Optoelectronic Technology and Systems of the Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 2Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
WANG Hong-Juan, HAN Gen-Quan, LIU Yan et al 2014 Chin. Phys. Lett. 31 058503 |
|
|
Abstract We investigate negative bias temperature instability (NBTI) on high performance Ge p?channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with low-temperature Si2H6 passivation. The Ge pMOSFETs exhibit an effective hole mobility of 311 cm2/V?s at an inversion charge density of 2.5×1012 cm?2. NBTI characterization is performed to investigate the linear transconductance (GM, lin) degradation and threshold voltage shift (ΔVTH) under NBT stress. Ge pMOSFETs with a 10 yr lifetime at an operating voltage of -0.72 V are demonstrated. The impact of the Si2H6 passivation temperature is studied. As the passivation temperature increases from 350°C to 550°C, the degradation of NBTI characteristics, e.g., GM, lin loss, ΔVTH and an operating voltage for a lifetime of 10 yr, is observed.
|
|
Published: 24 April 2014
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
72.80.Cw
|
(Elemental semiconductors)
|
|
72.20.Fr
|
(Low-field transport and mobility; piezoresistance)
|
|
|
|
|
[1] Pillarisetty R, Chu-Kung B, Corcoran S, Dewey G, Kavalieros, Kennel H, Kotlyar R, Le V, Lionberger D, Metz M, Mukherjee N, Nah J, Rachmady W, Radosavljevic M, Shah U, Taft S, Then H, Zelick N and Chau R 2011 IEEE Int. Electron Devices Meet. Tech. Dig. P 150 [2] De Jaeger B, Bonzom R, Leys F, O Richard O, Steenbergen J Van, Winderickx G, Moorhem E Van, Raskin G, Letertre F, Billon T, Meuris M and Heyns M M 2005 Microelectron. Eng. 80 26 [3] Liu B, Lim P S Y and Yeo Y C 2010 Proc. International Reliability Physics Symposium p 1055 [4] Aoulaiche M, Kaczer B, De Jaeger B, Houssa M, Martens K, Degraeve R, Roussel P, Mitard J, De Gendt S, Maes H E, Groeseneken G, Meuris M and Heyns M M 2008 Proc. International Reliability Physics Symposium p 358 [5] Mitard J, De Jaeger B, Leys F E, Hellings G, Martens K, Eneman G, Brunco D P, Loo R, Lin J C, Shamiryan D, Vandeweyer T, Winderickx G, Vrancken E, Yu C H, De Meyer K, Caymax M, Pantisano L, Meuris M and Heyns M M 2008 IEDM Tech. Dig. p 873 [6] Han G, Su S, Zhan C, Zhou Q, Yang Y, Wang L, Guo P, Wang W, Wong C P, Shen Z X, Cheng B and Yeo Y C 2011 IEDM Tech. Dig. p 402 [7] Gong X, Su S, Liu B, Wang L, Wang W, Yang Y, Kong E, Cheng B, Han G and Yeo Y C 2012 Symp. VLSI Tech. p 99 [8] Gong X, Han G, Liu B, Wang L, Wang W, Yang Y, Kong E Y J, Su S, Xue C, Cheng B and Yeo Y C 2013 IEEE Trans. Electron Devices 60 1640 [9] Guo P, Han G, Gong X, Liu B, Yang Y, Wang W, Zhou Q, Pan J, Zhang Z, Tok E S and Yeo Y C 2013 J. Appl. Phys. 114 044510 [10] Gong X, Han G, Bai F, Su S, Guo P, Yang Y, Cheng R, Zhang D, Zhang G, Xue C, Cheng B, Pan J, Zhang Z, Tok E S, Antoniadis D and Yeo Y C 2013 IEEE Electron Device Lett. 34 339 [11] Ikeda K, Yamashita Y, Sugiyama N, Taoka N and Takagi S 2006 Appl. Phys. Lett. 88 152115 [12] Niu G, Cressler D John, Mathew J Suraj and Subbanna S 1999 IEEE Trans. Electron Devices 46 1912 [13] Tsujikawa S, Mine T, Watanabe K, Shimamoto Y, Tsuchiya R, Ohnishi K, Onai T, Yugami J and Kimura S 2003 Proc. International Reliability Physics Symposium p 183 [14] Aono H, Murakami E, Okuyama K, Nishida A, Minami M, Ooji Y and Kubota K 2005 Microelectron. Reliab. 45 1109 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|