Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 055202    DOI: 10.1088/0256-307X/31/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Spectroscopic Diagnostics of Atmospheric Argon Microwave Plasma Based on an Inductive Coupling Window-Rectangular Resonator
WANG Zhong**, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong
Department of Electrical Engineering, Tsinghua University, Beijing 100084
Cite this article:   
WANG Zhong, ZHANG Gui-Xin, LIU Cheng et al  2014 Chin. Phys. Lett. 31 055202
Download: PDF(834KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a novel microwave plasma source based on an inductive coupling window-rectangular resonator. A definite volume of atmospheric argon microwave plasma is excited in the source under the input of several kilowatts of microwave power operating at 2.45 GHz. The excitation temperature and electron temperature of the argon plasma are separately researched by using Boltzmann plot and line-to continuum intensity ratio of Ar I spectral lines. Its electron density is inferred from the Stark broadening of the Hβ line at 486.13 nm.
Published: 24 April 2014
PACS:  52.80.Pi (High-frequency and RF discharges)  
  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/055202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/055202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhong
ZHANG Gui-Xin
LIU Cheng
JIA Zhi-Dong
[1] Verhoff B, Harilal S S, Freeman J R, Diwakar P K and Hassanein A 2012 J. Appl. Phys. 112 093303
[2] http://physics. nist.gov/PhysRefData/ASD/lines_form.html
[3] Sola A, Calzada M D and Gamero A 1995 J. Phys. D: Appl. Phys. 28 1099
[4] Bussiere W, Vacher D, Menecier S and Andre P 2011 Plasma Sources Sci. Technol. 20 045004
[5] Hofsaess D 1979 At. Data Nucl. Data Tables 24 285
[6] Menart J, Heberlein J and Pfender E 1996 J. Quant. Spectrosc. Radiat. Transfer. 56 377
[7] Menzel D H and Pekeris C L 1935 Mon. Not. R. Astron. Soc. 96 77
[8] Laux C O, Spence T G, Kruger C H and Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[9] Yubero C, Garcia M C and Calzada M D 2006 SpectroChim. Acta Part. B 61 540
[10] Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl. 25 37
[11] Zhu X M, Chen W C and Pu Y K 2008 J. Phys. D: Appl. Phys. 41 105212
[12] Yubero C, Calzada M D and Garcia M C 2005 J. Phys. Soc. Jpn. 74 2249
Related articles from Frontiers Journals
[1] Zhong-Zhen Wu, Shu Xiao, Sui-Han Cui, Ricky K. Y. Fu, Xiu-Bo Tian, Paul K. Chu, Feng Pan. Origin of Initial Current Peak in High Power Impulse Magnetron Sputtering and Verification by Non-Sputtering Discharge[J]. Chin. Phys. Lett., 2016, 33(07): 055202
[2] Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan, Shang-Sheng Li, Ying Wang, Xiao-Peng Jia, Hong-An Ma. B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2016, 33(02): 055202
[3] YU Yong-Hao, WANG Lang-Ping, WANG Xiao-Feng, JIANG Wei, CHEN Qiong. Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation[J]. Chin. Phys. Lett., 2015, 32(08): 055202
[4] SHI Yan-Chao, LI Jia-Jun, LIU Hao, ZUO Yong-Gang, BAI Yang, SUN Zhan-Feng, MA Dian-Li, CHEN Guang-Chao. Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 055202
[5] WANG Zhong, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong. Comparative Study on Excitation Temperature, Electron Temperature and Electron Density in an Atmospheric Argon Microwave Plasma[J]. Chin. Phys. Lett., 2014, 31(05): 055202
[6] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 055202
[7] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 055202
[8] LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges[J]. Chin. Phys. Lett., 2009, 26(8): 055202
[9] LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 055202
[10] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 055202
[11] SHANG Wan-Li, WANG De-Zhen. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2007, 24(7): 055202
[12] LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System[J]. Chin. Phys. Lett., 2006, 23(12): 055202
[13] OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2004, 21(7): 055202
[14] JIANG Zhong-He, HU Xi-Wei, LIU Ming-Hai, GU Cheng-Lin, PAN Yuan. Experiment and Simulation of Atmospheric Pressure Glow Surface Discharge[J]. Chin. Phys. Lett., 2003, 20(6): 055202
[15] YIN Zeng-Qian, DONG Li-Fang, CHAI Zhi-Fang, LI Xue-Chen, WANG Long. Temporal Behaviour of Micro-discharge in Dielectric Barrier Discharges[J]. Chin. Phys. Lett., 2002, 19(10): 055202
Viewed
Full text


Abstract