Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 054203    DOI: 10.1088/0256-307X/31/5/054203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Measurement of Diffusion Coefficient of Liquids by Using an Asymmetric Liquid-Core Cylindrical Lens: Observing the Diffusion Process Directly
LI Qiang1,2, PU Xiao-Yun1**, YANG Rui-Fen1, ZHAI Ying1
1Department of Physics, Yunnan University, Kunming 650091
2Solid-state Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
LI Qiang, PU Xiao-Yun, YANG Rui-Fen et al  2014 Chin. Phys. Lett. 31 054203
Download: PDF(533KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a method for measuring diffusion coefficient D of liquids by using an aplanatic and asymmetric cylinder lens with a liquid core, which is designed as both a diffusion pool and the main imaging element. The precision is better than 10?4 RIU in measuring refractive index. The D values of ethylene glycol (EG) in water are measured for various EG concentrations at 25°C, and Dinf=1.043×10?5 cm2/s under the condition of infinite dilution is obtained. The method is characterized by observing the diffusion process directly, faster measurement and obtaining the D value under the condition of infinite dilution.
Published: 24 April 2014
PACS:  42.30.-d (Imaging and optical processing)  
  07.60.-j (Optical instruments and equipment)  
  07.05.Fb (Design of experiments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/054203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/054203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qiang
PU Xiao-Yun
YANG Rui-Fen
ZHAI Ying
[1] Cussler E L 1997 Diffusion-Mass Transfer in Fluid Systems (Cambridge: Cambridge University Press) p 13
[2] Zuo M, Han Y L, Qi L and Chen Y 2007 Chin. Sci. Bull. 52 3325
[3] Angstmann C and Morriss G P 2012 Phys. Lett. A 376 1819
[4] Radi Z, L ábár J L and Barna P B 1998 Appl. Phys. Lett. 73 3220
[5] Ghaleh K J, Tavassoly M T and Mansour N 2004 J. Phys. D: Appl. Phys. 37 1993
[6] Chhaniwal V K, Anand A, Girhe S, Patil D, Subrahmanyam N and Narayanamurthy C S 2003 J. Opt. A: Pure Appl. Opt. 5 S329
[7] Yang C, Li W and Wu C 2004 J. Phys. Chem. B 108 11866
[8] Culbertson C T, Jacobson S C and Ransey J M 2002 Talanta 56 365
[9] Wang J H 1952 J. Am. Chem. Soc. 74 182
[10] Bek W J and Muttzal M K 2006 Transport Phenom. 2nd edn (New York: Wiley) p 15
[11] Such K Y and Langer R 2003 Appl. Phys. Lett. 83 1668
[12] Eastman J A 2001 Appl. Phys. Lett. 78 718
[13] Li Q and Pu X Y 2013 Acta Phys. Sin. 62 094206 (in Chinese)
[14] Qiu Y, Chen X, Li Y, Zheng B, Li S, Chen W and Liu H 2012 J. Biomed. Opt. 17 096017
[15] Li Q and Pu X Y 2013 Appl. Opt. 52 5318
[16] Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G and Wu Z B 2013 Chin. Phys. Lett. 30 074203
[17] Pikkarainen L 1983 J. Chem. Eng. Data 28 381
[18] Ciocirlan O, Croitoru O and Iulian O 2011 J. Chem. Eng. Data 56 1526
[19] Hills E E, Abraham M H and Hersey A 2011 Fluid Phase Equilib. 303 45
Related articles from Frontiers Journals
[1] Ling-Jun Kong, Rui Liu, Wen-Rong Qi, Zhou-Xiang Wang, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Asymptotical Locking Tomography of High-Dimensional Entanglement[J]. Chin. Phys. Lett., 2020, 37(3): 054203
[2] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 054203
[3] Rui Liu, Ling-Jun Kong, Yu Si, Zhou-Xiang Wang, Wen-Rong Qi, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Multi-Path Ghost Imaging by Means of an Additional Time Correlation[J]. Chin. Phys. Lett., 2019, 36(4): 054203
[4] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 054203
[5] Zong-Liang Xie, Bo Qi, Hao-Tong Ma, Ge Ren, Yu-Feng Tan, Bi He, Heng-Liang Zeng, Chuan Jiang. Optical Transfer Function Reconstruction in Incoherent Fourier Ptychography[J]. Chin. Phys. Lett., 2016, 33(04): 054203
[6] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 054203
[7] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 054203
[8] XIE Zong-Liang, MA Hao-Tong, QI Bo, REN Ge, TAN Yu-Feng, HE Bi, ZENG Heng-Liang, JIANG Chuan. Aperture-Scanning Fourier Ptychographic Encoding with Phase Modulation[J]. Chin. Phys. Lett., 2015, 32(12): 054203
[9] GAO Lu, TIAN Jia, LIN Hai-Long. Experimental Detection of Depth of Field for a Thermal Light Lensless Ghost Imaging System[J]. Chin. Phys. Lett., 2015, 32(01): 054203
[10] WAN Yu-Hong, MAN Tian-Long, CHEN Hao, JIANG Zhu-Qing, WANG Da-Yong. Effect of Wavefront Properties on Numerical Aperture of Fresnel Hologram in Incoherent Holographic Microscopy[J]. Chin. Phys. Lett., 2014, 31(04): 054203
[11] SHI Yi-Shi , WANG Ya-Li, LI Tuo, GAO Qian-Kun, WAN Hao, ZHANG San-Guo, WU Zhi-Bo . Ptychographical Imaging Algorithm with a Single Random Phase Encoding[J]. Chin. Phys. Lett., 2013, 30(7): 054203
[12] SHI Yi-Shi, WANG Ya-Li, ZHANG San-Guo. Generalized Ptychography with Diverse Probes[J]. Chin. Phys. Lett., 2013, 30(5): 054203
[13] ZHANG Man, PAN Rui, XIONG Wei, HE Ting, SHEN Jing-Ling. A Compressed Terahertz Imaging Method[J]. Chin. Phys. Lett., 2012, 29(10): 054203
[14] PAN Xing-Chen, LIN Qiang, LIU Cheng, and ZHU Jian-Qiang. A Lens Assisted Phase Microscope Based on Ptychography[J]. Chin. Phys. Lett., 2012, 29(8): 054203
[15] WANG Chen**, QIAO Ling-Ling, MAO Zheng-Le . Simulation of Far-Field Superresolution Fluorescence Imaging with Two-Color One-Photon Excitation of Reversible Photoactivatable Protein[J]. Chin. Phys. Lett., 2011, 28(5): 054203
Viewed
Full text


Abstract