FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Multiband Metamaterial Absorber at Terahertz Frequencies |
XU Zong-Cheng1,2**, GAO Run-Mei1,3, DING Chun-Feng1, ZHANG Ya-Ting1, YAO Jian-Quan1 |
1Institute of Laser and Opto-electronics and Key Laboratory of Opto-electronics Information Science and Technology, Tianjin University, Tianjin 300072 2Department of Physics, Tianjin University Renai College, Tianjin 301636 3College of science, Guilin University of Technology, Guilin 541004
|
|
Cite this article: |
XU Zong-Cheng, GAO Run-Mei, DING Chun-Feng et al 2014 Chin. Phys. Lett. 31 054205 |
|
|
Abstract We propose a multi-band metamaterial absorber operating at terahertz frequencies. The design, characterization, and theoretical calculation of the high performance metamaterial absorber are reported. The multi-band metamaterial absorber consists of two metallic layers separated by a dielectric spacer. Theoretical and simulated results show that the metamaterial absorber has four distinct absorption points at frequencies 0.57 THz, 1.03 THz, 1.44 THz and 1.89 THz, with the absorption rates of 99.9%, 90.3%, 83.0%, 96.1%, respectively. Two single band metamaterial absorbers and a dual band metamaterial absorber on the top layer are designed. Some multi-band absorbers can be designed by virtue of combining some single band absorbers. The multiple-reflection theory is used to explain the absorption mechanism of our investigated structures.
|
|
Published: 24 April 2014
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509 [2] Shelby R A, Smith D R and Schultz S 2001 Science 292 77 [3] Schurig D, Mock J J and Smith D R 2006 Appl. Phys. Lett. 88 041109 [4] Liu R P, Degoron A, Mock J J and Smith D R 2007 Appl. Phys. Lett. 90 263504 [5] Li J C, Guo L X and Liu S H 2012 Acta Phys. Sin. 61 124102 (in Chinese) [6] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517 [7] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342 [8] Wang Y, Sun T, Paudel T, Zhang Z, Ren Z and Kempa K 2012 Nano Lett. 12 440 [9] Landy N I, Sajuyigbe S, MockJ J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 [10] Ye Y Q, Jin Y and He S L 2010 J. Opt. Soc. Am. B 27 498 [11] Gu C, Qu S B, Pei Z B, Zhou H, Xu Z, Bai P, Peng W D and Lin B Q 2010 Chin. Phys. Lett. 27 117802 [12] Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and L I H 2011 Opt. Express 19 9401 [13] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Li Y L 2009 Appl. Phys. Lett. 95 241111 [14] Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102 [15] Jin Y, Xiao S, Mortensen N A and He S L 2011 Opt. Express 19 11114 [16] Chen H T 2012 Opt. Express 20 7165 [17] Cremer F, Jong W and Scutte K 2001 Proc. SPIE 169 4370 [18] Sadjadi F A and Chun C L 2003 Opt. Lett. 28 531 [19] Shen X P, Cui T J and Ye J X 2012 Acta Phys. Sin. 2 610 (in Chinese) [20] Park J W, Tuong P V, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y and Lee Y P 2013 Opt. Express 21 9691 [21] Smith D R 2005 Phys. Rev. E 71 036617 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|