Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037401    DOI: 10.1088/0256-307X/31/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers
Tatnatchai Suwannasit1, Rassmidara Hoonsawat1, I-Ming Tang1,3, Bumned Soodchomshom2**
1Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
2Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
3Department of Material Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Cite this article:   
Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang et al  2014 Chin. Phys. Lett. 31 037401
Download: PDF(756KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Josephson currents through real vector potential (RVP) and pseudo vector potential (PVP) barriers in graphene are investigated. In graphene, the pseudo vector potential may be caused by a local strain. The comparison of supercurrents induced by the two type-barriers is focused. As a result, we find that not only will the RVP induce a transition Josephson current from the 0→π state but also causes the difference in the phases of the order parameters of the two superconducting graphene layers to shift from φ→2φ. The critical current is PVP-independent around the neutrality point while it strongly depends on the RVP. The vector potential dependence of critical current is found to be perfectly linear for both PVP and RVP barriers.
Received: 15 August 2013      Published: 28 February 2014
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  81.05.ue (Graphene)  
  07.10.Pz (Instruments for strain, force, and torque)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tatnatchai Suwannasit
Rassmidara Hoonsawat
I-Ming Tang
Bumned Soodchomshom
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, I V and Firsov A A 2004 Science 306 666
[2] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[3] Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, Louie S G, Levitov L S and Crommie M F 2013 Science 340 734
[4] Zhai F, Zhao X, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442
[5] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[6] Soodchomshom B and Chantngarm P 2011 J. Supercond. Novel Magn. 24 1885
[7] Niu Z P 2012 J. Appl. Phys. 111 103712
[8] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
[9] Katsnelson M I and Novoselov K S 2007 Solid State Commun. 143 3
[10] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544
[11] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204
[12] Soodchomshom B 2011 Physica E 44 579
[13] Heersche H B, Jarillo-Heerero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[14] Borzenets I V, Coskun U C, Jones S J and Finkelstein G 2011 Phys. Rev. Lett. 107 137005
[15] Dirks T, Hughes T L, Lal S, Uchoa B, Chen Y F, Chialvo C, Goldbart P M and Mason N 2011 Nat. Phys. 7 386
[16] Jeong D, Choi J H, Lee G H, Jo S, Doh Y J and Lee H J 2011 Phys. Rev. B 83 094503
[17] Voutilainen J, Fay A, H ?kkinen P, Viljas J K, Heikkil? T T and Hakonen P J 2011 Phys. Rev. B 84 045419
[18] Tsumura K, Ohsugi M, Hayashi T, Watanabe E, Tsuya D, Nomura S and Takayanagi H 2012 J. Phys.: Conf. Ser. 400 042064
[19] Girit C, Bouchiat V, Naaman O, Zhang Y, Crommie M F, Zettl A and Siddiqi I 2009 Nano Lett. 9 198
[20] Halterman K, Valls O T and Alidoust M 2013 Phys. Rev. Lett. 111 046602
[21] Borzenets I V, Coskun U C, Mebrahtu H T, Bomze Yu V, Smirnov A I and Finkelstein G 2013 Phys. Rev. Lett. 111 027001
[22] Allain A, Han Z and Bouchiat V 2012 Nat. Mater. 11 590
[23] Li W X, Xu X, Chen Q H, Zhang Y, Zhou S H, Zeng R and Dou S X 2011 Acta Mater. 59 7268
[24] Tarasov M, Lindvall N, Kuzmin L and Yurgens A 2011 JETP Lett. 94 329
[25] Soodchomshom B 2012 J. Supercond. Novel Magn. 25 405
[26] Linder J and Sudb? A 2008 Phys. Rev. B 77 064507
[27] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[28] Maiti M and Sengupta K 2007 Phys. Rev. B 76 054513
[29] Linder J, Yokoyama T, Huertas-Hernando D and Sudb? A 2008 Phys. Rev. Lett. 100 187004
[30] Suwannasit T, Tang I M, Hoonsawat R and Soodchomshom B 2011 J. Low Temp. Phys. 165 15
[31] Goudarzi H, Khezerlou M and Dezhaloud T 2013 Physica C 489 8
[32] Josephson B D 1962 Phys. Lett. 1 251
[33] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337
[34] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[35] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401
[36] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401(R)
[37] Thiên-Nga L, Hernadi K, Ljubovi? E, Garaj S and Forró L 2002 Nano Lett. 2 1349
[38] Mohiudddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K and Ferrari A C 2009 Phys. Rev. B 79 205433
Related articles from Frontiers Journals
[1] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 037401
[2] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 037401
[3] Wei-Xiong Wu, Yang Feng, Yun-He Bai, Yu-Ying Jiang, Zong-Wei Gao, Yuan-Zhao Li, Jian-Li Luan, Heng-An Zhou, Wan-Jun Jiang, Xiao Feng, Jin-Song Zhang, Hao Zhang, Ke He, Xu-Cun Ma, Qi-Kun Xue, and Ya-Yu Wang. Gate Tunable Supercurrent in Josephson Junctions Based on Bi$_{2}$Te$_{3}$ Topological Insulator Thin Films[J]. Chin. Phys. Lett., 2021, 38(3): 037401
[4] Shaohua Wang, Qiangwei Yin, Hechang Lei. Physical Properties of [$A_{6}$Cl][Fe$_{24}$Se$_{26}$]($A$=K, Rb) with Self-Similar Structure[J]. Chin. Phys. Lett., 2020, 37(1): 037401
[5] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 037401
[6] Feng Li, Wei Peng, Zhen Wang. The 0–$\pi$ Phase Transition in Epitaxial NbN/Ni$_{60}$Cu$_{40}$/NbN Josephson Junctions[J]. Chin. Phys. Lett., 2019, 36(4): 037401
[7] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 037401
[8] Xing-Yuan Hou, Ya-Dong Gu, Zong Wang, Hai Zi, Xiang-De Zhu, Meng-Di Zhang , Chun-Hong Li, Cong Ren, Lei Shan. Proximity-Induced Superconductivity in New Superstructures on 2H-NbSe$_2$ Surface[J]. Chin. Phys. Lett., 2017, 34(7): 037401
[9] Jing-Hui Li. Enhancement of Resonant Activation by Constant Bias Current for Superconducting Junction[J]. Chin. Phys. Lett., 2016, 33(11): 037401
[10] Bin-He Wu, Xu-Yu Feng, Chao Wang, Xiao-Feng Xu, Chun-Rui Wang. Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions$^{*}$[J]. Chin. Phys. Lett., 2016, 33(01): 037401
[11] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 037401
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 037401
[13] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 037401
[14] WANG Da, LU Hong-Yan, WANG Qiang-Hua. The Finite Temperature Effect on Josephson Junction between an s-Wave Superconductor and an s±-Wave Superconductor[J]. Chin. Phys. Lett., 2013, 30(7): 037401
[15] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 037401
Viewed
Full text


Abstract