Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037305    DOI: 10.1088/0256-307X/31/3/037305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning Out-of-Plane Spin Polarization Using in-Plane Magnetic Fields in a Quasi-One-Dimensional Quantum Wire Embedded in (110) Plane
SUN Jin-Fang1**, CHENG Fang2
1The State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
SUN Jin-Fang, CHENG Fang 2014 Chin. Phys. Lett. 31 037305
Download: PDF(938KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate theoretically the combination effect of an in-plane magnetic field and spin-orbit interactions (SOIs) on the spin and charge transport property of a quasi-one-dimensional quantum wire embedded in the (110) crystallographic plane. We find that the oscillations of the conductance induced by the SOIs become more significant and different for the spin-up and spin-down electrons in the presence of the in-plane magnetic field. The conductance exhibits a significant anisotropic behavior and electrons exhibit out-of-plane spin polarization which can be tuned by an in-plane magnetic field. These features offer us an efficient way to control SOI-induced spin transport using in-plane magnetic fields.
Received: 24 December 2013      Published: 28 February 2014
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.63.Nm (Quantum wires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037305       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Jin-Fang
CHENG Fang
[1] ?uti? I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Tracts in Modern Physics) (Berlin: Springer) vol 191
[3] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[4] Rashba E I 1960 Sov. Phys. Solid State 2 1109
Rashba E I and Sherman E Y 1988 Phys. Lett. A 129 175
[5] Dresselhaus G 1955 Phys. Rev. 100 580
[6] Ganichev S D et al 2004 Phys. Rev. Lett. 92 256601
[7] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056402
[8] Wang X F and Vasilopoulos P 2005 Phys. Rev. B 72 165336
[9] Sheng J S and Chang K 2006 Phys. Rev. B 74 235315
[10] Wang M and Chang K 2008 Phys. Rev. B 77 125330
[11] Wang M, Chang K and Chan K S 2009 Appl. Phys. Lett. 94 052108
[12] Wang M et al 2009 Nanotechnology 20 365202
[13] Koralek J D et al 2009 Nature 458 610
[14] Ban Y and Sherman E Y 2011 Appl. Phys. Lett. 99 112101
[15] Meier L, Salis G, Shorubalko I, Schon S and Ensslin K 2007 Nat. Phys. 3 650
[16] Souma S and Nikoli? B K 2004 Phys. Rev. B 70 195346
Nikoli? B K and Souma S 2005 Phys. Rev. B 71 195328
[17] Molnár B, Peeters F M and Vasilopoulos P 2004 Phys. Rev. B 69 155335
[18] Zhai F and Xu H Q 2005 Phys. Rev. Lett. 94 246601
[19] Liao W H and Zhou G H 2005 Chin. Phys. Lett. 22 2922
[20] Cheng F and Zhou G H 2005 Chin. Phys. Lett. 22 2039
[21] Wang J et al 2010 Chin. Phys. Lett. 27 067303
[22] D'yakonov M I and Kachorovskii V Y 1986 Sov. Phys. Semicond. 20 110
[23] Sato Y, Kita T, Gozu S and Yamada S 2001 J. Appl. Phys. 89 8017
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 037305
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 037305
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 037305
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 037305
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 037305
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 037305
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037305
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 037305
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 037305
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 037305
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 037305
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 037305
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 037305
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 037305
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 037305
Viewed
Full text


Abstract