Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030201    DOI: 10.1088/0256-307X/31/3/030201
GENERAL |
A Pseudo Arc-Length Method for Numerical Simulation of Shock Waves
WANG Xing, MA Tian-Bao**, NING Jian-Guo
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081
Cite this article:   
WANG Xing, MA Tian-Bao, NING Jian-Guo 2014 Chin. Phys. Lett. 31 030201
Download: PDF(1106KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A pseudo arc-length method is proposed for the numerical simulation of shock wave propagations. This method passes the discontinuities and establishes adaptive moving meshes in the physical space by introducing the arc-length parameter and transforming the computational domain. Numerical experiments of the Sod problem, double Mach reflection problem and explosion problem demonstrate that this approach is more efficient than traditional numerical methods in capturing and tracking discontinuous solutions of singular or nearly singular problems.
Received: 08 November 2013      Published: 28 February 2014
PACS:  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  47.40.Nm (Shock wave interactions and shock effects)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xing
MA Tian-Bao
NING Jian-Guo
[1] Li R, Tang T and Zhang P W 2002 J. Comput. Phys. 177 365
[2] Zhang Z D and Bi Q S 2010 Chin. Phys. Lett. 27 104702
[3] Kosiuk I and Szmolyan P 2011 SIAM J. Appl. Dyn. Syst. 10 1307
[4] Vanani S K and Soleymani F 2012 Chin. Phys. Lett. 29 030202
[5] Kumar B V R and Mehra M 2005 Appl. Math. Comput. 166 312
[6] Mats H 1999 SIAM J. Sci. Comput. 21 405
[7] Shu C W and Osher S 1988 J. Comput. Phys. 77 439
[8] Cockburn B and Shu C W 1998 J. Comput. Phys. 141 199
[9] Tan S R, Wang C, Shu C W and Ning J G 2012 J. Comput. Phys. 231 2510
[10] Li X L, Fu D X and Ma Y W 2006 Chin. Phys. Lett. 23 1519
[11] Toro E F 2009 Riemann Solvers Numerical Methods For Fluid Dynamics: A Practical Introduction 3rd edn (Berlin: Springer)
[12] Riks E 1979 Int. J. Solids Struct. 15 529
[13] Carrera E 1994 Comput. Struct. 50 217
[14] Kyoung S L, Sang E H and Taehyo P 2011 Comput. Struct. 89 216
[15] Wu J K, Hui W H and Ding H L 1997 Commun. Nonlinear Sci. Numer. Simul. 2 145
[16] Huang W and Russell R D 2011 Adaptive Moving Mesh Methods (New York: Springer-Verlag)
[17] Woodward P and Colella P 1984 J. Comput. Phys. 54 115
Related articles from Frontiers Journals
[1] Long Xiong, Wei-Feng Zhuang, and Ming Gong. Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method[J]. Chin. Phys. Lett., 2022, 39(7): 030201
[2] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 030201
[3] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 030201
[4] CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong. Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2014, 31(04): 030201
[5] HOU Shen-Yong, YU Sheng, LI Hong-Fu. Ohmic Losses in Coaxial Cavity Gyrotron with Outer Corrugation [J]. Chin. Phys. Lett., 2013, 30(12): 030201
[6] F. Khaksar Haghani, S. Karimi Vanani, J. Sedighi Hafshejani. Numerical Computation of the Tau Approximation for the Delayed Burgers Equation[J]. Chin. Phys. Lett., 2013, 30(2): 030201
[7] ZOU Li, ZOU Dong-Yang, WANG Zhen, ZONG Zhi. Finding Discontinuous Solutions to the Differential-Difference Equations by the Homotopy Analysis Method[J]. Chin. Phys. Lett., 2013, 30(2): 030201
[8] A. Yildirim, A. Gökdoğan, M. Merdan, V. Lakshminarayanan. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens[J]. Chin. Phys. Lett., 2012, 29(7): 030201
[9] PAN Feng, XIE Ming-Xia, SHI Chang-Liang, J. P. DRAAYER. Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator[J]. Chin. Phys. Lett., 2012, 29(7): 030201
[10] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030201
[11] Junaid Ali Khan**, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Novel Approach for a van der Pol Oscillator in the Continuous Time Domain[J]. Chin. Phys. Lett., 2011, 28(11): 030201
[12] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 030201
[13] Junaid Ali Khan*, Muhammad Asif Zahoor Raja**, Ijaz Mansoor Qureshi . Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations[J]. Chin. Phys. Lett., 2011, 28(2): 030201
[14] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 030201
[15] ZHANG Zhan-Long, DENG Jun, XIAO Dong-Ping, HE Wei, TANG Ju. An Adaptive Fast Multipole Higher Order Boundary Element Method for Power Frequency Electric Field of Substation[J]. Chin. Phys. Lett., 2010, 27(3): 030201
Viewed
Full text


Abstract