CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
GaN Films Grown on Si (111) Substrates Using a Composite Buffer with Low Temperature AlN Interlayer |
FANG Yu-Tao, JIANG Yang**, DENG Zhen, ZUO Peng, CHEN Hong |
Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
FANG Yu-Tao, JIANG Yang, DENG Zhen et al 2014 Chin. Phys. Lett. 31 028101 |
|
|
Abstract A GaN interlayer between low temperature (LT) AlN and high temperature (HT) AlN is introduced to combine HT AlN, LT AlN and composition-graded AlGaN as a novel buffer layer for GaN films grown on Si (111) substrates. The crystal quality, surface morphology and strain state of the GaN film with this new buffer are compared with those of GaN grown on a conventional buffer structure. By changing the thickness of LT AlN, the crystal quality is optimized and the crack-free GaN film is obtained. The in-plane strain in the GaN film can be changed from tensile to compressive strain with the increase in LT AlN thickness.
|
|
Received: 13 August 2013
Published: 28 February 2014
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
82.80.Gk
|
(Analytical methods involving vibrational spectroscopy)
|
|
|
|
|
[1] Pal S and Jacob C 2004 Bull. Mater. Sci. 27 501 [2] Chen P, Zhang R, Zhao Z M, Xi D J, Shen B, Chen Z Z, Zhou Y G, Xie S Y, Lu W F and Zheng Y D 2001 J. Cryst. Growth 25 150 [3] Dadgar A, Bl?sing J, Diez A, Alam A, Heuken M and Krost A 2000 Jpn. J. Appl. Phys. 39 L1183 [4] Wu Y X, Zhang J J, Zhao D G, Liu Z S, Jiang D S, Zhang S M, Wang H, Chen G F and Yang H 2009 Chin. Phys. B 18 4413 [5] Feltin E, Beaumont B, La?ugt M, Mierry P, Vennéguès P, Lahrμ eche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230 [6] Kim M H, Do Y G, Kang H C, Noh D Y and Park S L 2001 Appl. Phys. Lett. 79 2713 [7] Ishiikawa H, Zhao G Y, Nakadan N, Egawa T, Jimbo T and Umeno M 1999 Jpn. J. Appl. Phys. 38 L492 [8] Xu P Q, Jiang Y, Ma Z G, Deng Z, Lu T P, Du C H, Fang Y T, Zuo P and Chen H 2013 Chin. Phys. Lett. 30 028101 [9] Lin K L, Chang E Y, Hsiao Y L, Huang W C, Luong T T and Wong Y Y 2010 J. Vac. Sci. Technol. B 28 473 [10] Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl. Phys. 41 155317 [11] Lou W J, Wang X L, Guo L C, Xiao H L, Wang C M, Ran J X, Li J P and Li J M 2008 Superlattices Microstruct. 44 153 [12] Reiher A, Bl?sing J, Dadgar A, Diez A and Krost A 2003 J. Cryst. Growth 248 563 [13] Bl?sing J, Reiher A, Dadgar A, Diez A and Krost A 2002 Appl. Phys. Lett. 81 2722 [14] Cong G W, Lu Y, Peng W Q, Liu X L, Wang X H and Wang Z G 2005 J. Cryst. Growth 276 381 [15] Nitta S, Yukawa Y, Watanabe Y, Yamaguchi S, Amano H and Akasaki I 2002 Phys. Status Solidi A 194 485 [16] Wang L, Wang L, Ren F, Zhao W, Wang J X, Hu J N, Zhang, Hao Z B and Luo Y 2010 Acta Phys. Sin. 59 8021 (in Chinese) [17] Xiang R F, Fang Y Y, Dai J N, Zhang L, Su C Y, Wu Z H, Yu C H, Xiong H, Chen C Q and Hao Y 2011 J. Alloys Compd. 509 2227 [18] Lafford T A, Tanner B K and Parbrook P J 2003 J. Phys. D: Appl. Phys. 36 A245 [19] Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69 [20] Acord J D, Weng X J, Dickey E C, Snyder D W and Redwing J M 2008 J. Cryst. Growth 310 2314 [21] Raghavan S, Weng X J, Dickey E and Redwing J M 2006 Appl. Phys. Lett. 88 041904 [22] Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|