CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Band Alignment and Band Gap Characterization of La2O3 Films on Si Substrates Grown by Radio Frequency Magnetron Sputtering |
LIU Qi-Ya1,2, FANG Ze-Bo2**, JI Ting3**, LIU Shi-Yan2, TAN Yong-Sheng2, CHEN Jia-Jun1, ZHU Yan-Yan2 |
1College of Physics and Electronic Information, China West Normal University, Nanchong 637002 2Department of Physics, Shaoxing University, Shaoxing 312000 3Key Laboratory of Advanced Transducers and Intelligent Control System, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
|
|
Cite this article: |
LIU Qi-Ya, FANG Ze-Bo, JI Ting et al 2014 Chin. Phys. Lett. 31 027702 |
|
|
Abstract La2O3 films are grown on Si (100) substrates by the radio-frequency magnetron sputtering technique. The band alignment of the La2O3/Si heterojunction is analyzed by the x-ray photoelectron spectroscopy. The valence-band and the conduction-band offsets of La2O3 films to Si substrates are found to be 2.40±0.1 and 1.66±0.3 eV, respectively. Based on O 1s energy loss spectrum analysis, it can be noted that the energy gap of La2O3 films is 5.18±0.2 eV, which is confirmed by the ultra-violet visible spectrum. According to the suitable band offset and large band gap, it can be concluded that La2O3 could be a promising candidate to act as high-k gate dielectrics.
|
|
Received: 09 September 2013
Published: 28 February 2014
|
|
|
|
|
|
[1] Lo S H, Buchanan D A, Taur Y and Wang W 1997 IEEE Electron Device Lett. 18 209 [2] Kingon A I, Maria J P and Streiffer S K 2000 Nature 406 1032 [3] Fang Z B, Zhu Y Y and Chen W 2011 Appl. Phys. A 102 695 [4] Zhu Y Y, Fang Z B and Tan Y S 2012 Chin. Phys. Lett. 29 087701 [5] Ji T, Cui J, Fang Z B, Nie T X, Fan Y L et al 2011 J. Cryst. Growth 321 171 [6] Zhu L Q, Kita B P and Nishimura T 2011 Jpn. J. Appl. Phys. 50 031502 [7] Robertson J 2000 J. Vac. Sci. Technol. B 18 1785 [8] Tsoutsou D, Scarel G, Debernardi A, Capelli S C, Volkos S N, Lamagna L et al 2008 Microelectron. Eng. 85 2411 [9] Kang B W, Seo J K, Kim H D and Park J W 2008 J. Korean Phys. Soc. 53 3334 [10] Kim D, Lee S, Kim C, Oh T and Kang B 2012 Jpn. J. Appl. Phys. 51 02BC10 [11] Zhang X Q, Tu H L, Zhao H B, Yang M M and Wang X N 2011 Appl. Phys. Lett. 99 132902 [12] Yamamoto Y, Kita K, Kyuno K and Toriumi A 2006 Appl. Phys. Lett. 89 032903 [13] Yim C J, Ko D, Jang M H, Chung K B, Cho M H and Jeon H T 2008 Appl. Phys. Lett. 92 012922 [14] Sze S M 1981 Hysics Semiconductor Devices 2nd edn (New York: Wiley) p 247 [15] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620 [16] McKee R A, Walker F J, Nardelli M B, Shelton W A and Stocks G M 2003 Science 300 1726 [17] Charmbers S A, Liang Y, Yu Z et al 2001 J. Vac. Sci. Technol. A 19 934 [18] Akazawa M, Gao B, Hashizume T et al 2011 J. Appl. Phys. 109 013703 [19] Afanas'ev V V, Badylevich M, Stesmans A, Laha A, Osten H J, Fissel A et al 2008 Appl. Phys. Lett. 93 192105 [20] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627 [21] Zhao Y, Kita K, Kyuno K and Toriumi A 2009 Appl. Phys. Lett. 94 042901 [22] Ohmi S, Kobayashi C, Kashiwagi I et al 2003 Electrochem Soc. 150 7-F134 [23] Zhu Y Y, Fang Z B and Liu Y S 2010 J. Rare Earths 28 752 [24] Afanas'ev V V, Chou H Y, Houssa M, Stesmans A et al 2011 Appl. Phys. Lett. 99 172101 [25] Yang T, Zhao C, Xu G B, Xu Q X, Li J F, Wang W W, Yan J et al 2012 ElectroChem. Solid-State Lett. 15 141 [26] Mahata C, Byun Y C, An C H, Choi S, An Y and Kim H 2013 ACS Appl. Mater. Interfaces 5 4195 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|