Chin. Phys. Lett.  2013, Vol. 30 Issue (12): 123702    DOI: 10.1088/0256-307X/30/12/123702
ATOMIC AND MOLECULAR PHYSICS |
A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing
LIU Wei1,2**, CHEN Shu-Ming1,2**, CHEN Ping-Xing3, WU Wei3
1College of Computer, National University of Defense Technology, Changsha 410073
2Science and Technology on PDL, National University of Defense Technology, Changsha 410073
3College of Science, National University of Defense Technology, Changsha 410073
Cite this article:   
LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing et al  2013 Chin. Phys. Lett. 30 123702
Download: PDF(837KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a configurable surface-electrode ion trap design to alleviate the poor reusability of the existing traps. It can architecturally and electrically support 5 mainstream modes by design reuse, thus enhancing the trap reusability and reducing the experiment setup overhead. We also develop a corresponding simulation suite which can optimize trap geometries and calculate trap parameters to control the trapped ion's classic motion. According to our analytical and simulated results, the configurable design can serve as a unified platform for basic research of large-scale quantum information processing.
Received: 20 July 2013      Published: 13 December 2013
PACS:  37.10.Ty (Ion trapping)  
  03.67.Lx (Quantum computation architectures and implementations)  
  41.20.-q (Applied classical electromagnetism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/12/123702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I12/123702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Wei
CHEN Shu-Ming
CHEN Ping-Xing
WU Wei
[1] DiVincenzo D P 2000 Fortschr. Phys. 48 771
[2] Ladd T D et al 2010 Nature 464 45
[3] Monroe C and Kim J 2013 Science 339 1164
[4] Chiaverini J et al 2005 Quantum Inf. Comput. 5 419
[5] Amini J M, Britton J, Leibfried D and Wineland D J 2011 Atom Chips (Germany: Wiley-VCH) p 395
[6] Leibrandt D R el al 2007 Phys. Rev. A 76 055403
[7] Allcock D T C et al 2010 New J. Phys. 12 053026
[8] Bowler R et al 2012 Phys. Rev. Lett. 109 080502
[9] Seidelin S et al 2006 Phys. Rev. Lett. 96 253003
[10] Doret S C et al 2012 New J. Phys. 14 073012
[11] Eschner J et al 2003 J. Opt. Soc. Am. B 20 1003
[12] Wright K et al 2013 New J. Phys. 15 033004
[13] House M G 2008 Phys. Rev. A 78 033402
[14] Nizamani A H and Hensinger W K 2012 Appl. Phys. B 106 327
[15] Ji W B et al 2011 Chin. Phys. Lett. 28 073701
[16] Ji W B et al 2012 Chin. Phys. B 21 063701
[17] Berkeland D J et al 1998 J. Appl. Phys. 83 5025
[18] Littich G 2011 Master Thesis (University of California)
[19] Ben-Israel A and Greville Thomas N E 2010 Generalized Inverses (Berlin: Springer) p 93
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 123702
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 123702
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 123702
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 123702
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 123702
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 123702
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 123702
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 123702
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 123702
[10] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 123702
[11] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 123702
[12] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 123702
[13] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 123702
[14] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 123702
[15] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 123702
Viewed
Full text


Abstract