Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110502    DOI: 10.1088/0256-307X/30/11/110502
GENERAL |
Transition Mode of Two Parallel Flags in Uniform Flow
WANG Si-Ying1,2, DUAN Wen-Gang1, YIN Xie-Zhen2**
1Changjiang River Scientific Research Institute, Wuhan 430010
2University of Science and Technology of China, Hefei 230027
Cite this article:   
WANG Si-Ying, DUAN Wen-Gang, YIN Xie-Zhen 2013 Chin. Phys. Lett. 30 110502
Download: PDF(601KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupled flapping of two side-by-side identical flags in uniform flow is observed experimentally and numerically. Besides the early reported stable, in-phase, and out-of-phase modes, a transition mode between the in-phase and out-of-phase modes is newly presented. Essentially different from the other modes, the flapping in this transition mode is no longer a single cycle motion. Especially, the FFT analysis of the displacement-time curve indicates that there are multiple peaks of frequency in this mode, of which the smaller value is comparable to the frequency of the in-phase mode and the larger one is close to that of the out-of-phase mode. Changing of the weights of different single cycle motions may explain the mode transition.
Received: 16 May 2013      Published: 30 November 2013
PACS:  05.70.Fh (Phase transitions: general studies)  
  47.54.-r (Pattern selection; pattern formation)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Si-Ying
DUAN Wen-Gang
YIN Xie-Zhen
[1] Higdon J J L and Corrsin S 1978 The American Naturalist 112 727
[2] Cutts C J and Speekman J R 1994 J. Exp. Biol. 189 251
[3] Weimerskirch H, Martin J, Clerquin Y, Alexandre P and Jiraskovas 2001 Nature 413 697
[4] Zhang J, Childress S, Libchaber A and Shelly M 2000 Nature 408 835
[5] Zhu L D and Peskin C S 2003 Phys. Fluids 15 1954
[6] Farnell D J J, David T and Barton D C 2004 J. Fluids Struct. 19 29
[7] Jia L B, Li F, Yin X Z and Yin X Y 2007 J. Fluid Mech. 581 199
[8] Alben S 2009 J. Fluid Mech. 641 489
[9] Schouveiler L and Eloy C 2009 Phys. Fluids 21 081703
[10] Michelin S and Llewellyn Smith S G 2009 J. Fluids Struct. 25 1136
[11] Tian F B, Luo H X, Zhu L D and Lu X Y 2011 Phys. Fluids 23 111903
[12] Shelly M and Zhang J 2011 Annu. Rev. Fluid Mech. 43 449
[13] Wang S Y, Tian F B, Jia L B, Lu X Y and Yin X Z 2010 Phys. Rev. E 81 036305
[14] Wang S Y and Yin X Z 2010 Chin. Sci. Bull. 55 3880
[15] Katz J and Plotkin A 2001 Low-Speed Aerodynamics (Cambridge: Cambridge University)
Related articles from Frontiers Journals
[1] Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He, and Zhong-Yi Lu. Framework for Contrastive Learning Phases of Matter Based on Visual Representations[J]. Chin. Phys. Lett., 2023, 40(2): 110502
[2] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 110502
[3] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 110502
[4] Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang. A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect[J]. Chin. Phys. Lett., 2019, 36(7): 110502
[5] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 110502
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 110502
[7] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 110502
[8] GE Hong-Xia, MENG Xiang-Pei, ZHU Ke-Qiang, CHENG Rong-Jun. The Stability Analysis for an Extended Car Following Model Based on Control Theory[J]. Chin. Phys. Lett., 2014, 31(08): 110502
[9] DENG Yi-Bo, GU Qiang. Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice[J]. Chin. Phys. Lett., 2014, 31(2): 110502
[10] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 110502
[11] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue. Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice[J]. Chin. Phys. Lett., 2012, 29(12): 110502
[12] HU Mao-Bin, Henry Y.K. Lau, LING Xiang, JIANG Rui. Pheromone Static Routing Strategy for Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 110502
[13] LIU You-Jun, ZHANG Hai-Lin, HE Li. Cooperative Car-Following Model of Traffic Flow and Numerical Simulation[J]. Chin. Phys. Lett., 2012, 29(10): 110502
[14] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 110502
[15] YU Wing-Chi, WANG Li-Gang, GU Shi-Jian, and LIN Hai-Qing. Scaling of the Leading Response in Linear Quench Dynamics in the Quantum Ising Model[J]. Chin. Phys. Lett., 2012, 29(8): 110502
Viewed
Full text


Abstract