Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 119801    DOI: 10.1088/0256-307X/30/11/119801
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Cosmology with an Effective Λ-Term in Lyra Manifold
V. K. Shchigolev**
Department of Theoretical Physics, Ulyanovsk State University, Ulyanovsk 432000, Russia
Cite this article:   
V. K. Shchigolev 2013 Chin. Phys. Lett. 30 119801
Download: PDF(454KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A cosmological model in Lyra's geometry is studied under the assumption that an effective cosmological term appears in the field equations as the result of interaction between the displacement vector field and an auxiliary Λ term. Some exact solutions to the model equations are obtained and preliminarily studied for the simplest cases in order to illustrate how such a model works.
Received: 11 July 2013      Published: 30 November 2013
PACS:  98.80.-k (Cosmology)  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
  04.20.Jb (Exact solutions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/119801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/119801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
V. K. Shchigolev
[1] Lyra G 1951 Math. Z. 54 52
[2] Riess A G et al 1998 Astron. J. 116 1009
[3] Perlmutter S et al 1999 Astrophys. J. 517 565
[4] Spergel D et al 2003 Astrophys. J. Suppl. 148 175
[5] Komatsu E et al 2011 Astrophys. J. Suppl. 192 18
[6] Blake C, Glazebrook K 2003 Astrophys. J. 594 665
[7] Seo H and Eisenstein D 2003 Astrophys. J. 598 720
[8] Chen W and Wu Y S 1990 Phys. Rev. D 41 695
[9] Pavon D 1991 Phys. Rev. D 43 375
[10] Carvalho J C, Lima J A S and Waga I 1992 Phys. Rev. D 46 2404
[11] Lima J A S and Maia J M F 1994 Phys. Rev. D 49 5597
[12] Arbab A I and Abdel Rahaman A M M 1994 Phys. Rev. D 50 7725
[13] Matyjasek J 1995 Phys. Rev. D 51 4154
[14] Overduin J M and Cooperstock F I 1998 Phys. Rev. D 58 043506
[15] Sahni V and Starobinsky A 2000 Int. J. Mod. Phys. D 9 373
[16] Cunha J V and Santos R C 2004 Int. J. Mod. Phys. D 13 1321
[17] Carneiro S and Lima J A S 2005 Int. J. Mod. Phys. A 20 2465
[18] Hova H 2013 J. Geom. Phys. 64 146
[19] Zhi H Z, Shi M and Meng X 2012 arXiv:1210.6431 [physics.gen-ph]
[20] Chaubey R and Shukla A K 2013 Int. J. Theor. Phys. 52 735
[21] Sahu S K and Tapas K 2013 Int. J. Theor. Phys. 52 793
[22] Shchigolev V K and Semenova E A 2012 arXiv:1203.0917 [gr-qc]
[23] Shchigolev V K 2012 Mod. Phys. Lett. A 27 1250164
[24] Raj B and Tikekar R S 2007 Chin. Phys. Lett. 24 3290
[25] Xu L X et al 2007 Chin. Phys. Lett. 24 2459
[26] Shchigolev V K 2013 Mod. Phys. Lett. A 28 1350056
[27] Sen D K and Dunn K A 1971 J. Math. Phys. 12 578
[28] Amanullah R, Lidman C, Rubin D et al 2010 Astrophys. J. 716 712
[29] Liao K, Pan Y and Zhu Z H 2013 Res. Astron. Astrophys. 13 159
[30] Zhang C W et al 2007 Chin. Phys. Lett. 24 1425
[31] Wu P X and Yu H W 2007 Chin. Phys. Lett. 24 843
[32] Ray S, Khlopov M et al 2011 Int. J. Theor. Phys. 50 939
Related articles from Frontiers Journals
[1] Jing Yang, Xin-Yan Fan, Chao-Jun Feng, and Xiang-Hua Zhai. Latest Data Constraint of Some Parameterized Dark Energy Models[J]. Chin. Phys. Lett., 2023, 40(1): 119801
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 119801
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 119801
[4] D. Aberkane, N. Mebarki, S. Benchikh. Viscous Modified Chaplygin Gas in Classical and Loop Quantum Cosmology[J]. Chin. Phys. Lett., 2017, 34(6): 119801
[5] Jie An, Bao-Rong Chang, Li-Xin Xu. Cosmic Constraints to the $w$CDM Model from Strong Gravitational Lensing[J]. Chin. Phys. Lett., 2016, 33(07): 119801
[6] He-Kun Li, Pu-Xun Wu, Hong-Wei Yu. Test of the Cosmic Transparency with the Baryon Acoustic Oscillation and Type Ia Supernova Data[J]. Chin. Phys. Lett., 2016, 33(05): 119801
[7] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 119801
[8] Khurshudyan M., Pasqua A., Sadeghi J., Farahani H.. Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2015, 32(10): 119801
[9] ZHU Wen-Tao, WU Pu-Xun, YU Hong-Wei. Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage–Loeb Test[J]. Chin. Phys. Lett., 2015, 32(5): 119801
[10] YANG Lei, YANG Wei-Qiang, XU Li-Xin. Constraining Equation of State of Dark Matter: Including Weak Gravitational Lensing[J]. Chin. Phys. Lett., 2015, 32(5): 119801
[11] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 119801
[12] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 119801
[13] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 119801
[14] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 119801
[15] M. Farasat Shamir, Adil Jhangeer, and Akhlaq Ahmad Bhatti. Conserved Quantities in f(R) Gravity via Noether Symmetry[J]. Chin. Phys. Lett., 2012, 29(8): 119801
Viewed
Full text


Abstract