Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 117102    DOI: 10.1088/0256-307X/30/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Comparative Study of Ballistic Transport Models for Nanowire MOSFETs
ZHANG Li-Ning1,2, MEI Jin-He2, ZHANG Xiang-Yu2, TAO Jin2, HU Yue2, HE Jin1,2**, CHAN Mansun3
1School of Electronics and Computer Sciences, Peking University, Beijing 100871
2Peking University Shenzhen SOC Key Laboratory, PKU-HKUST Shenzhen-Hongkong Institution,Peking Univesity Shenzhen Institute, Shenzhen 518055
3Department of ECE, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
Cite this article:   
ZHANG Li-Ning, MEI Jin-He, ZHANG Xiang-Yu et al  2013 Chin. Phys. Lett. 30 117102
Download: PDF(688KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We comparatively study two representative ballistic transport models of nanowire metal-oxide-semiconductor field effect transistors, i.e. the Natori model and the Jiménez model. The limitations and applicability of both the models are discussed. Then the Jiménez model is extended to include atomic dispersion relations and is compared with the Natori model from the aspects of ballistic current and quantum capacitance. It is found that the Jiménez model can produce similar results compared with the more complex Natori model even at very small nanowire dimensions.
Received: 20 June 2013      Published: 30 November 2013
PACS:  71.20.Mq (Elemental semiconductors)  
  71.20.Nr (Semiconductor compounds)  
  72.80.Cw (Elemental semiconductors)  
  73.23.Ad (Ballistic transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/117102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/117102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Li-Ning
MEI Jin-He
ZHANG Xiang-Yu
TAO Jin
HU Yue
HE Jin
CHAN Mansun
[1] Kobayashi M and Hiramoto T 2008 J. Appl. Phys. 103 053709
[2] Xu N, Wang B, Sun H and Kong F 2010 Chin. Phys. B 19 117202
[3] Neophytou N, Kim S G, Klimech G and Kosina H 2010 J. Appl. Phys. 107 113701
[4] Neophytou N, paul A, Lundstrom M and Klimeck G 2008 IEEE Trans. Electron Devices 55 1286
[5] Wang J, Rahman A, Ghosh A, Klimeck G and Lunstrom M 2005 Appl. Phys. Lett. 86 093113
[6] Michetti P, Mugnaini G and Iannaccone G 2009 IEEE Trans. Electron Devices 56 1402
[7] Natori K 1994 J. Appl. Phys. 76 4879
[8] Lundstrom M S and Guo J 2006 Nanoscale transistors: Device Physics, Modeling and Simuilation (New York: Springer)
[9] Rahman A, Guo J, Datta S and Lundstrom M S 2003 IEEE Trans. Electron Devices 50 1853
[10] Natori K 2008 IEEE Trans. Electron Devices 55 2877
[11] Jiménez D, S áenz J J, I?íquez B, Su? éJ, Marsal L F and Parllarès J 2003 J. Appl. Phys. 94 1061
[12] Lee Y, Kakushima K, Shiraishi K, Natori K and Iwai H 2010 J. Appl. Phys. 107 113705
[13] Lee Y, Kakushima K, Shiraishi K, Natori K and Iwai H 2010 Appl. Phys. Lett. 97 032101
[14] Paul B C, Tu R, Fujita S, Okajima M, Lee T H and Nishi Y 2007 IEEE Trans. Electron Devices 54 1637
[15] I?íquez B, Jiménez D, Roig J, Hamid H A, Marsal L F and Parllarès J 2005 IEEE Trans. Electron Devices 52 1868
[16] Gnani E, Reggiani S, Gnudi A, Parruccini P, Colle R, Rudan M and Baccarani G 2007 IEEE Trans. Electron Devices 54 2243
[17] Luryi S 1988 Appl. Phys. Lett. 52 501
[18] John D L, Castro L C and Pulfrey D L 2004 J. Appl. Phys. 96 5180
[19] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[20] Boykin T B, Klimeck G and Oyafuso F 2004 Phys. Rev. B 69 115201
[21] Wang J, Polizzi E and Lunstrom M 2004 J. Appl. Phys. 96 2192
Related articles from Frontiers Journals
[1] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 117102
[2] Cong-Cong Fan, Ji-Shan Liu, Kai-Li Zhang, Wan-Ling Liu, Xiang-Le Lu, Zheng-Tai Liu, Dong Wu, Zhong-Hao Liu, Da-Wei Shen, Li-Xing You. Two Gaps in Semiconducting EuSbTe$_3$ Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 117102
[3] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 117102
[4] LI Qi, WANG Wei-Dong, LIU Yun, WEI Xue-Ming. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor[J]. Chin. Phys. Lett., 2012, 29(2): 117102
[5] WU Xue-Wei, ZHANG Hai-Xin, LIU Xiao-Jun**, ZHANG Xing-Gan** . Optical Properties and Photocatalytic Activity of Marokite-Type CaMn2O4[J]. Chin. Phys. Lett., 2011, 28(10): 117102
[6] GUO Yu-Feng, WANG Zhi-Gong, SHEU Gene, CHENG Jian-Bing. A High Performance Silicon-on-Insulator LDMOSTT Using Linearly Increasing Thickness Techniques[J]. Chin. Phys. Lett., 2010, 27(6): 117102
[7] WANG Gui, GONG Xin-Gao. A Possible Structure of the Al36 Cluster: Coexistence of Icosahedral and fcc-Like Structures[J]. Chin. Phys. Lett., 2009, 26(8): 117102
[8] CHENG Jian-Bing, ZHANG Bo, DUAN Bao-Xing, LI Zhao-Ji. A Novel Super-Junction Lateral Double-Diffused Metal--Oxide--Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer[J]. Chin. Phys. Lett., 2008, 25(1): 117102
[9] DUAN Bao-Xing, ZHANG Bo, LI Zhao-Ji. New Power Lateral Double Diffused Metal--Oxide--Semiconductor Transistor with a Folded Accumulation Layer[J]. Chin. Phys. Lett., 2007, 24(5): 117102
[10] ZHAO Pu-Qin, HU Dong-Sheng, WU Xing-Long. Quantum Confinement of Si Nanosphere with Radius Smaller than 1.2nm[J]. Chin. Phys. Lett., 2005, 22(6): 117102
Viewed
Full text


Abstract