Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110303    DOI: 10.1088/0256-307X/30/11/110303
GENERAL |
Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity
RUAN Xiao-Xia1,2, GONG Hao1,3, DU Long1, JIANG Yu4,5, SUN Wei-Min1,5,6, ZONG Hong-Shi1,5,6
1Department of Physics, Nanjing University, Nanjing 210093
2Faculty of Science, Jiangsu University, Zhenjiang 212013
3Department of Mathematics and Physics, Bengbu College, Bengbu 233030
4Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004
5State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
6Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093
Cite this article:   
RUAN Xiao-Xia, GONG Hao, DU Long et al  2013 Chin. Phys. Lett. 30 110303
Download: PDF(621KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking into account the effect of the generalized Gor'kov and Melik–Barkhudarov (GMB) approximation, we calculate the radio-frequency spectra of balanced and homogeneous ultracold Fermi gases within the framework of the non-self-consistent T-matrix approximation at unitarity in the normal phase. The corresponding equations are numerically calculated on the real frequency axis directly. It is found that our results agree well with the experimental result of the radio-frequency spectroscopy [Phys. Rev. Lett. 101 (2008) 140403].
Received: 27 August 2013      Published: 30 November 2013
PACS:  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RUAN Xiao-Xia
GONG Hao
DU Long
JIANG Yu
SUN Wei-Min
ZONG Hong-Shi
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[2] Greiner M, Regal C A and Jin D S 2003 Nature 426 537
[3] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[4] Jochim S et al 2003 Science 302 2101
[5] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 120401
[6] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201
[7] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[8] Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
[9] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Denschlag J H and Grimm R 2004 Science 305 1128
[10] Shin Y, Schunck C H, Schirotzek A and Ketterle W 2007 Phys. Rev. Lett. 99 090403
[11] Schunck C H, Shin Y, Schirotzek A, Zwierlein M W and Ketterle W 2007 Science 316 867
[12] Schunck C H, Shin Y I, Schirotzek A and Ketterle W 2008 Nature 454 739
[13] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744
[14] Schirotzek A, Shin Y I, Schunck C H and Ketterle W 2008 Phys. Rev. Lett. 101 140403
[15] Kinnunen J, Rodriguez M and T?rm? P 2004 Science 305 1131
[16] He Y, Chen Q J and Levin K 2005 Phys. Rev. A 72 011602 (R)
[17] Baym G, Pethick C J, Yu Z and Zwierlein M W 2007 Phys. Rev. Lett. 99 190407
[18] Punk M and Zwerger W 2007 Phys. Rev. Lett. 99 170404
[19] He Y, Chien C C, Chen Q J and Levin K 2008 Phys. Rev. A 77 011602(R)
[20] Perali A, Pieri P and Strinati G C 2008 Phys. Rev. Lett. 100 010402
[21] Basu S and Mueller E J 2008 Phys. Rev. Lett. 101 060405
[22] Massignan P, Bruun G M and Stoof H T C 2008 Phys. Rev. A 77 031601 (R)
[23] Massignan P, Bruun G M and Stoof H T C 2008 Phys. Rev. A 78 031602(R)
[24] Gor'kov L P and Melik-Barkhudarov T K 1961 Sov. Phys. JETP 13 1018
[25] Yu Z Q, Huang K and Yin L 2009 Phys. Rev. A 79 053636
[26] Noziéres P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[27] Tsuchiya S, Watanabe R and Ohashi Y 2009 Phys. Rev. A 80 033613
[28] Chien C C et al 2010 Phys. Rev. A 81 023622
[29] Ruan X X et al 2013 Phys. Rev. A 87 043608
[30] Tsuchiya S et al 2011 Phys. Rev. A 84 043647
[31] Haussmann R et al 2009 Phys. Rev. A 80 063612
Related articles from Frontiers Journals
[1] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 110303
[2] Jing-Bo Wang, Jian-Song Pan, Xiaoling Cui, and Wei Yi. Quantum Droplets in a Mixture of Bose–Fermi Superfluids[J]. Chin. Phys. Lett., 2020, 37(7): 110303
[3] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 110303
[4] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 110303
[5] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 110303
[6] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 110303
[7] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 110303
[8] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 110303
[9] DENG Shu-Jin, DIAO Peng-Peng, YU Qian-Li, WU Hai-Bin. All-Optical Production of Quantum Degeneracy and Molecular Bose–Einstein Condensation of 6Li[J]. Chin. Phys. Lett., 2015, 32(5): 110303
[10] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 110303
[11] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 110303
[12] QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui. Dynamics of Dark Solitons in Superfluid Fermi Gases[J]. Chin. Phys. Lett., 2013, 30(11): 110303
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 110303
[14] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 110303
[15] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 110303
Viewed
Full text


Abstract