CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Hydrogen and Nitrogen Carrier Gas Ratio on the Structural and Optical Properties of AlInGaN Alloy |
FENG Xiang-Xu**, LIU Nai-Xin, ZHANG Lian, ZHANG Ning, ZENG Jian-Ping, WEI Xue-Cheng, LIU Zhe, WEI Tong-Bo, WANG Jun-Xi, LI Jin-Min |
Research and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
|
|
Cite this article: |
FENG Xiang-Xu, LIU Nai-Xin, ZHANG Lian et al 2013 Chin. Phys. Lett. 30 108103 |
|
|
Abstract Undoped AlInGaN epilayers on GaN templates with different hydrogen (H2) and nitrogen (N2) carrier gas ratios (1:8, 2:8, and 3:8 as samples 1, 2 and 3, respectively) were grown. When the flow ratio of H2 and N2 rises from 1:8 to 3:8, an indium composition decrease from 3% to 1.2% is observed while the aluminum content stays constant at any flow ratio. Due to the quantum-dot-like effect, photoluminescence intensity is enhanced in the sample with the low carrier gas flow ratio of H2/N2. However, the potential well caused by indium uneven distribution is nonuniform, which is more severe in the sample with carrier gas flow ratio 1:8. The process of carrier transfer from shallow to deep potential wells would be more difficult to accomplish, resulting in the reduction of the photoluminescence intensity. This is found to be consistent with the carriers' lifetime with the help of time-resolved photoluminescence.
|
|
Received: 14 June 2013
Published: 21 November 2013
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
|
|
|
[1] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024 [2] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507 [3] Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123 [4] Zhang Y Y, Fan G H, Yin Y A and Yao G R 2012 Opt. Express 20 A133 [5] Tu P M, Chang C Y, Huang S C, Chiu C H, Chang J R, Chang W T, Wuu D S, Zan H W, Lin C C, Kuo H C and Hsu C P 2011 Appl. Phys. Lett. 98 211107 [6] Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105 [7] Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 9245 [8] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102 [9] Jetter M, W ?chter C, Meyer A and Michler P 2011 Phys. Status Solidi C 8 2163 [10] Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474 [11] Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388 [12] Pan Y, Yu T, Yang Z, Wang H, Qin Z, Hu X, Wang K, Yao S and Zhang G 2007 J. Cryst. Growth 298 341 [13] Piner E L, Behbehani M K, El-Masry N A, Roberts J C, McIntosh F G and Bedair S M 1997 Appl. Phys. Lett. 71 2023 [14] Yamaguchi S, Kariya M, Kosaki M, Yukawa Y, Nitta S, Amano H and Akasaki I 2001 J. Appl. Phys. 89 7820 [15] Sadlern T C, Kappers M J and Oliver R A 2011 J. Cryst. Growth 331 4 [16] Northrup J E 2009 Phys. Rev. B 79 041306(R) [17] Koukitu A, Taki T, Takahashi N and Seki H 1999 J. Cryst. Growth 197 99 [18] Harris C I, Monemar B, Amano H and Akasaki I 1995 Appl. Phys. Lett. 67 840 [19] Brandt O, Ringling J, Ploog K H, Wünsche H J and Henneberger F 1998 Phys. Rev. B 58 R15977 [20] Chichibu S, Azuhata T, Sota T and Nakamura S 1997 Appl. Phys. Lett. 70 2822 [21] Narukawa Y, Kawakami Y, Funato M, Fujita S, Fujita S and Nakamura S 1997 Appl. Phys. Lett. 70 981 [22] Chichibu S, Azuhate T, Sota T and Nakamura S 1996 Appl. Phys. Lett. 69 4188 [23] Narukawa Y, Kawakami Y, Fujita S, Fujita S and Nakamura S 1997 Phys. Rev. B 55 R1938 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|