Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 106101    DOI: 10.1088/0256-307X/30/10/106101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ground States of Silicon-Multisubstituted Fullerene: First-Principles Calculations and Monte Carlo Simulations
FAN Bing-Bing1,2, SHI Chun-Yan1, ZHANG Rui1**, JIA Yu2
1School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001
2School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001
Cite this article:   
FAN Bing-Bing, SHI Chun-Yan, ZHANG Rui et al  2013 Chin. Phys. Lett. 30 106101
Download: PDF(935KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a systematical study on the possible stable structures of C60?xSix (x=1–12) fullerenes using first-principles calculations combined with Monte-Carlo simulations. The initial fullerenes randomly substituting with silicon atoms are firstly generated and then their total energies are calculated quickly. The ground-state structures are found by the annealing process where Si atoms exchange their positions with C atoms. The stable structures are finally obtained through first-principles calculations with high precision. For the cases with a small amount of Si atoms (x4), results similar to those report previously are achieved. Some new stable Si-doped fullerenes with more Si atoms are also predicated. The results show that Si atoms in the C60?xSix (x4) fullerenes have a trend of segregation with C atoms. The minimum-energy structure changes from a chemical unstable state to a chemical stable state when x8.
Received: 21 June 2013      Published: 21 November 2013
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  63.20.dk (First-principles theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/106101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/106101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Bing-Bing
SHI Chun-Yan
ZHANG Rui
JIA Yu
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Shelimov K B and Jarrold M F 1996 J. Am. Chem. Soc. 118 1139
[3] Adhikari K and Ray A K 2011 Phys. Lett. A 375 1817
[4] Xin N, Huang H, Zhang J, Dai Z and Gan L 2012 Angew. Chem. 124 6267
[5] Branz W, Billas I M L, Malinowski N, Tast F, Heinebrodt M and Martin T P 1998 J. Chem. Phys. 109 3425
[6] Tang C, Deng K, Tan W, Yuan Y, Liu Y, Yang J and Wang X 2007 Eur. Phys. J. D 43 125
[7] Zhang R Q, Lee H L, Li W K and Teo B K 2005 J. Phys. Chem. B 109 8605
[8] Yang X and Ni J 2005 Phys. Rev. B 72 195426
[9] De Crescenzi M, Castrucci P, Scarselli M, Diociaiuti M, Chaudhari P S, Balasubramanian C, Bhave T M and Bhoraskar S V 2005 Appl. Phys. Lett. 86 231901
[10] Fuks I, Kityk I V, Kasperczyk J, Berdowski J and Schirmer I 2002 Chem. Phys. Lett. 353 7
[11] Mavrandonakis A, Froudakis G E, Schnell M and Mühlh?user M 2003 Nano Lett. 3 1481
[12] Ray C, Pellarin M, Lermé J L, Vialle J L, Broyer M, Blase X, M élinon P, K éghélian P and Perez A 1998 Phys. Rev. Lett. 80 5365
[13] Fu C C, Weissmann M, Machado M and Ordejón P 2001 Phys. Rev. B 63 085411
[14] Matsubara M, Kortus J, Parlebas J C and Massobrio C 2006 Phys. Rev. Lett. 96 155502
[15] Matsubara M and Massobrio C 2009 Phys. Rev. B 79 155411
[16] Yang X and Ni J 2003 Phys. Rev. B 67 195403
[17] Aradi B, Hourahine B and Frauenheim T 2007 J. Phys. Chem. A 111 5678
[18] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[19] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[20] Jelski D, Bowser J, Xia X, Gao J and George T 1993 J. Cluster Sci. 4 173
[21] Marcos P A, Alonso J A and Lopez M J 2005 J. Chem. Phys. 123 204323
Related articles from Frontiers Journals
[1] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 106101
[2] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 106101
[3] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 106101
[4] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 106101
[5] Can the Fullerene C0 Encage the Tetrahedral Td-N? A Density Functional Study. Can the Fullerene C80 Encage the Tetrahedral Td-N4? A Density Functional Study[J]. Chin. Phys. Lett., 2009, 26(9): 106101
[6] S. Eren San, Mustafa Okutan, Oguz Koysal, Yusuf Yerli. Carbon Nanoparticles in Nematic Liquid Crystals[J]. Chin. Phys. Lett., 2008, 25(1): 106101
Viewed
Full text


Abstract