Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 104207    DOI: 10.1088/0256-307X/30/10/104207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Suppression of the Thermal Effects in the Femtosecond Laser Processing of Fiber Bragg Gratings
CUI Wei, SI Jin-Hai, CHEN Tao**, YAN Fei, CHEN Feng, HOU Xun
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics & Information Engineering, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
CUI Wei, SI Jin-Hai, CHEN Tao et al  2013 Chin. Phys. Lett. 30 104207
Download: PDF(690KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal effects on the processing of type-I IR fiber Bragg gratings (FBGs) using a femtosecond laser with a phase mask are investigated. Thermal effects are significantly suppressed by using interval exposure mode and reducing the tension on the fiber. FBGs with improved photo-induced refractive index modulation are fabricated in the standard telecom fiber. The index modulation reaches 1.6×10?3. The reflectivity and bandwidth are measured to be ?0.36 dB and 1.27 nm, respectively.
Received: 18 June 2013      Published: 21 November 2013
PACS:  42.79.Dj (Gratings)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.62.Cf (Industrial applications)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/104207       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/104207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Wei
SI Jin-Hai
CHEN Tao
YAN Fei
CHEN Feng
HOU Xun
[1] Rao Y 1999 Meas. Sci. Technol. 8 355
[2] Liang R B, Sun Q Z, Wo J H and Liu D M 2011 Acta Phys. Sin. 60 104221 (in Chinese)
[3] Giles C R 1997 J. Lightwave Technol. 15 1391
[4] Ouellette F, Krug P A, Stephens T, Dhosi G and Eggleton B 1995 Electron. Lett. 31 899
[5] Kabakova I V, Grobnic D, Mihailov S, M ?gi E C, de Sterke C M and Eggleton B J 2011 Opt. Express 19 5868
[6] Shahoei H, Li M and Yao J 2011 J. Lightwave Technol. 29 1465
[7] Lemaire P J, Atkins R M, Mizrahi V and Reed W A 1993 Electron. Lett. 29 1191
[8] Martinez A, Dubov M, Khrushchev I and Bennion I 2004 Electron. Lett. 40 1170
[9] Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, Henderson G and Unruh J 2003 Opt. Lett. 28 995
[10] Davis K M, Miura K, Sugimoto N and Hirao K 1996 Opt. Lett. 21 1729
[11] Mihailov S J, Grobnic D, Smelser C W, Lu P, Walker R B and Ding H 2011 Opt. Mater. Express 1 754
[12] Sudrie L, Franco M, Prade B and Mysyrowicz A 2001 Opt. Commun. 191 333
[13] Smelser C, Mihailov S and Grobnic D 2005 Opt. Express 13 5377
[14] Eaton S, Zhang H, Herman P, Yoshino F, Shah L, Bovatsek J and Arai A 2005 Opt. Express 13 4708
[15] Smelser C W, Grobnic D and Mihailov S J 2004 Opt. Lett. 29 1730
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 104207
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 104207
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 104207
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 104207
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 104207
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 104207
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 104207
[8] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 104207
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 104207
[10] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 104207
[11] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 104207
[12] LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang. A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications[J]. Chin. Phys. Lett., 2014, 31(09): 104207
[13] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 104207
[14] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 104207
[15] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 104207
Viewed
Full text


Abstract