CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improved Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors by Employing Polyimide/Chromium Composite Thin Films as Surface Passivation and High-Permittivity Field Plates |
CHU Fu-Tong**, CHEN Chao, ZHOU Wei, LIU Xing-Zhao |
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
CHU Fu-Tong, CHEN Chao, ZHOU Wei et al 2013 Chin. Phys. Lett. 30 097303 |
|
|
Abstract The breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs) is enhanced by employing metal chromium (Cr) nanoparticle-embedded polyimide (PI) as a high-permittivity (high-K) dielectric covering both the source-gate and gate-drain regions. The PI/Cr composite high-K dielectrics acting as a field plate prevent the occurrence of strong electric fields produced at the drain side edge of the gate electrode to obtain an optimum lateral electric flux of HEMTs. The breakdown voltage is improved by approximately 35% when using the PI/Cr thin film dielectric field plate while maintaining high performance, a high transconductance value of 122.4 mS/mm, and a large saturated drain-current value of 748 mA/mm.
|
|
Received: 25 March 2013
Published: 21 November 2013
|
|
|
|
|
|
[1] Kumar V, Lu W, R Schwindt, Kuliev A, Simin G, Yang J, Khan M A and Adesida I 2002 IEEE Electron Device Lett. 23 455 [2] Wang Z G, Chen W J, Zhang B and Li Z J 2012 Chin. Phys. Lett. 29 107202 [3] Yang L, Hao Y, Ma X H, Quan S, Hu G Zh, Jiang S G and Yang L Y 2009 Chin. Phys. Lett. 26 117104 [4] Liu J, Zhou Y G, Chu R M, Cai Y, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 145 [5] Tian B L, Chen C, Zhang J H, Zhang W L and Liu X Z 2013 Chin. Phys. Lett. 30 026101 [6] Zhang G Y, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Qin Z X, Zhang G Y 2007 Chin. Phys. Lett. 24 1682 [7] Hu G Zh, Yang L, Yang L Y, Quan S, Jiang Sh G, Ma J G, Ma X H and Hao Y 2010 Chin. Phys. Lett. 27 087302 [8] Xu Zh H, Zhang J C, Zhang Zh F, Zhu Q W, Duan H T and Hao Y 2009 Chin. Phys. B 18 5457 [9] Xing H, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161 [10] Karmalkar S and Mishra U K 2001 IEEE Electron Device Lett. 48 1515 [11] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Device Lett. 21 421 [12] Kim Y S, Lim J, Seok O G and Han M K 2011 Power Semiconductor Devices ICs (ISPSD), IEEE 23rd International Symposium (San Diego, America 23–26 May 2011) p 251 [13] Song D, Liu J, Cheng Z, Tang W C W, Lau K M and Chen K 2007 IEEE Electron Device Lett. 28 189 [14] Chen X B 2005 U. S. Patent No 6 936 907 [15] Li J, Li P, Huo W, Zhang G and Zhai Y 2011 IEEE Electron Device Lett. 33 1266 [16] Spassova E 2003 Vacuum 70 551 [17] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T and Hu G H 2012 Prog. Mater. Sci. 57 660 [18] Karmalkar S, Shur M S, Simin G and Khan M A 2005 IEEE Electron Device Lett. 52 2534 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|