CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Application of a New Simulation Approach to Ferrimagnetic Nanowires |
LIU Zhao-Sen**, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang |
School of Physics and Photoelectronics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044
|
|
Cite this article: |
LIU Zhao-Sen, YANG Cui-Hong, GU Bin et al 2013 Chin. Phys. Lett. 30 097302 |
|
|
Abstract The quantum simulation model and the self-consistent computational algorithm we proposed two years ago are utilized to investigate the physical properties of a magnetic nanowire consisting of 3d ions which are coupled antiferromagnetically. In the absence of the external magnetic field, all simulations are started from a spin configuration with all moments in the nanosample randomly oriented and performed from a temperature above the magnetic transition temperature TM down to very low temperature as carried out by previous researchers using the Monte Carlo method, and such obtained results are all physically reasonable, verifying the correctness of the simulation model and computing algorithm. In addition, our calculated results suggest that increasing the surface anisotropy enables an increase in the magnetic transition temperature, although less effectively than by enhancing the Heisenberg exchange strength directly.
|
|
Received: 25 June 2013
Published: 21 November 2013
|
|
|
|
|
|
[1] Li T, Yang S G, Huang L S, Gu B X and Du Y W 2004 Chin. Phys. Lett. 21 729 [2] Li S D, Bi H, Fang J L, Zhong W and Du Y W 2004 Chin. Phys. Lett. 21 737 [3] Li T, Yang S G, Huang L S, Gu B X and Du Y W 2004 Chin. Phys. Lett. 21 966 [4] Landau L D and Lifshitz E M 1935 Phys. Zeit. Sowjetunion 8 153 [5] Brown Jr W F 1966 Magnetostatic Principles in Ferromagnetism (New York: Springer) [6] Binder K and Heermann D W 1992 Monte Carlo Simulation in Statistical Physics (Berlin: Springer) [7] Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2005 Chin. Phys. Lett. 22 489 [8] Zhong K H, Huang Z G, Feng Q, Jiang L Q, Yang Y M and Chen Z G 2006 Chin. Phys. Lett. 23 200 [9] Huang Z G, Chen Z G, Jiang L Q, Ye Q Y and Wu Q Y 2006 Chin. Phys. 15 1602 [10] Weng Z Z, Feng Q, Huang Z G and Du Y W 2004 Acta Phys. Sin. 53 3177 (in Chinese) [11] Lu H P, Han M G, Deng L J, Liang D F and Ou Y 2010 Acta Phys. Sin. 59 2090 (in Chinese) [12] Zhang H W, Rong C B, Zhang J, Zhang S Y and Shen B G 2003 Acta Phys. Sin. 52 718 (in Chinese) [13] Usov N A and Gudoshnikov S A 2006 J. Magn. Magn. Mater. 300 164 [14] Liu Z S, Sechovsky V and Divi? M 2011 J. Phys.: Condens. Matter 23 016002 [15] Liu Z S, Sechovsky V and Divi? M 2011 Chin. Phys. Lett. 28 067302 [16] Liu Z S, Sechovsky V and Divi? M 2012 Phys. Status Solidi B 249 202 [17] Liu Z S, Sechovsky V and Divi? M 2012 Physica E 44 826 [18] Liu Z S, Sechovsky V and Divi? M 2013 Physica E 47 128 [19] Néel L 1936 Ann. Phys. (Paris) 5 232 Néel L 1948 Ann. Phys. (Paris) 3 I37 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|