Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 091202    DOI: 10.1088/0256-307X/30/9/091202
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Influence of Quark Current Mass on Quark Condensate at Finite Temperature
LU Chang-Fang1**, LÜ Xiao-Fu2
1Department of Physics, Sichuan Agricultural University, Ya'an 625014
2Department of Physics, Sichuan University, Chengdu 610064
Cite this article:   
LU Chang-Fang, Lü Xiao-Fu 2013 Chin. Phys. Lett. 30 091202
Download: PDF(598KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the Dyson–Schwinger equation and perturbation theory, we define the quark condensate with the quark current mass at finite temperature, and compare the quark condensate at finite temperature for the quark current mass m=0 and m≠0, respectively. The results show that the two-quark condensates have significantly different behaviors from the quark condensate in the chiral limit, and the quark current mass has a very important influence over the solution of the non-perturbative term.
Received: 11 March 2013      Published: 21 November 2013
PACS:  12.38.Lg (Other nonperturbative calculations)  
  12.38.Bx (Perturbative calculations)  
  12.38.-t (Quantum chromodynamics)  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/091202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/091202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Chang-Fang
Lü Xiao-Fu
[1] Zong H S et al 2003 Phys. Rev. D 67 074004
[2] Zong H S et al 1999 Phys. Rev. C 60 55208
[3] Zong H S et al 2000 Commun. Theor. Phys. 34 563
[4] Meissner T 1997 Phys. Lett. B 405 8
[5] Kisslinger L and Meissner T 1998 Phys. Rev. C 57 1528
[6] Zhou L J and Ma W X 2003 Chin. Phys. Lett. 20 2137
[7] Tang H H and Peng G X 2011 Commun. Theor. Phys. 56 1071
[8] Zhang Z and Zhao W Q 2005 Phys. Lett. B 610 235
[9] Cahill R T and Roberts C D 1985 Phys. Rev. D 32 2419
[10] Tandy P 1997 Prog. Part. Nucl. Phys. 39 117
[11] Cahill R T and Gunner S M 1998 Fiz. B 7 17
[12] Lu C F et al 2009 Commun. Theor. Phys. 52 483
[13] Chang L, Liu Y X and Guo H 2005 Phys. Rev. D 72 094023
[14] Yndurǎin F J 1983 Quantum Chromodynamics (An Introduction to the Theory of Quarks and Gluons) (New York: Spinger-Verlag)
[15] Munczek H J and Nemirovsky A M 1983 Phys. Rev. D 28 181
[16] Bender A et al 1996 Phys. Rev. Lett. 77 3724
[17] Bender A et al 1998 Phys. Lett. B 431 263
[18] Blaschke D et al 1998 Phys. Lett. B 425 232
[19] Blaschke D and Roberts C D 1998 Nucl. Phys. A 642 c197
[20] Blaschke D et al 1999 Phys. Lett. B 450 207
[21] Peng G X 2006 Phys. Lett. B 634 413
Related articles from Frontiers Journals
[1] Hua-Xing Chen, Niu Su, and Shi-Lin Zhu. QCD Axial Anomaly Enhances the $\eta \eta^\prime$ Decay of the Hybrid Candidate $\eta_1(1855)$[J]. Chin. Phys. Lett., 2022, 39(5): 091202
[2] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 091202
[3] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 091202
[4] Hua-Xing Chen, Wei Chen, Rui-Rui Dong, and Niu Su. $X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks[J]. Chin. Phys. Lett., 2020, 37(10): 091202
[5] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 091202
[6] ZHANG Zhu-Feng, JIN Hong-Ying, T. G. Steele. Revisiting 1?+ Light Hybrid from Monte-Carlo Based QCD Sum Rules[J]. Chin. Phys. Lett., 2014, 31(05): 091202
[7] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 091202
[8] LI Hua, LUO Xin-Lian, JIANG Yu, ZONG Hong-Shi, **. The Renormalized Equation of State and Quark Star[J]. Chin. Phys. Lett., 2010, 27(12): 091202
[9] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 091202
[10] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 091202
[11] WANG Zhi-Gang. Reanalysis of the (0+,1+) States Bs0 and Bs1 with QCD Sum Rules[J]. Chin. Phys. Lett., 2008, 25(11): 091202
[12] HUANG Tao, ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model[J]. Chin. Phys. Lett., 2008, 25(10): 091202
[13] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 091202
[14] JIN Hong-Ying, LIU Shao-Min, ZHANG Zhu-Feng, LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays[J]. Chin. Phys. Lett., 2008, 25(5): 091202
[15] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 091202
Viewed
Full text


Abstract