Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 088401    DOI: 10.1088/0256-307X/30/8/088401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Microwave Transmissions through Superconducting Coplanar Waveguide Resonators with Different Coupling Configurations
ZHANG Si-Lei1,3, LI Hai-Jie1, WEI Lian-Fu1,2**, FANG Yu-Rong4, WANG Yi-Wen1, ZHOU Pin-Jia1, WEI Qiang1, CAO Chun-Hai4, XIONG Xiang-Zheng3**
1Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031
2State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-sen University, Guangzhou 510275
3Institute of Electromagnetic Field and Microwave Technology, Southwest Jiaotong University, Chengdu 610031
4Research Institute of Superconductor Electronics, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Si-Lei, LI Hai-Jie, WEI Lian-Fu et al  2013 Chin. Phys. Lett. 30 088401
Download: PDF(654KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We design and fabricate two types of superconducting niobium coplanar waveguide microwave resonators with different coupling capacitors on high purity Si substrates. Their microwave transmissions are measured at 20 mK. It is found that these two types of resonators possess significantly different loaded quality factors; one is 5.6×103 and the other is 4.0×104. The measured data are fitted well by classical ABCD matrix approach and consequently the coupling capacitances are determined. It is found that the transmission peak deviates from the standard Lorentizian with a frequency broadening.
Received: 11 April 2013      Published: 21 November 2013
PACS:  84.40.Az (Waveguides, transmission lines, striplines)  
  74.78.Na (Mesoscopic and nanoscale systems)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/088401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/088401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Si-Lei
LI Hai-Jie
WEI Lian-Fu
FANG Yu-Rong
WANG Yi-Wen
ZHOU Pin-Jia
WEI Qiang
CAO Chun-Hai
XIONG Xiang-Zheng
[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A and Zmuidzinas J 2003 Nature 425 817
[2] Mazin B A, Day P K, LeDuc H G, Vayonakis A and Zmuidzinas J 2002 Proc. SPIE 4849 283
[3] Zmuidzinas J and Richards P L 2004 Proc. IEEE 92 1597
[4] Mazin B A, Eckart M E, Bumble B, Golwala S, Day P, Gao J and Zmuidzinas J 2008 J. Low Temp. Phys. 151 537
[5] Vardulakis G, Withington S, Goldie D J and Glowacka D M 2008 Meas. Sci. Technol. 19 015509
[6] Siddiqi I, Vijay R, Pierre F, Wilson C M, Metcalfe M, Rigetti C, Frunzio L and Devoret M H 2004 Phys. Rev. Lett. 93 207002
[7] Tholén E, Ergül A, Doherty E, Weber F, Grégis F and Haviland D 2007 Appl. Phys. Lett. 90 253509
[8] Yurke B, Corruccini L R, Kaminsky P G, Rupp L W, Smith A D, Silver A H, Simon R W and Whittaker E A 1989 Phys. Rev. A 39 2519
[9] Castellanos-Beltran M and Lehnert K 2007 Appl. Phys. Lett. 91 083509
[10] Frunzio L, Wallraff A, Schuster D, Majer J and Schoelkopf R 2005 IEEE Trans. Appl. Supercond. 15 860
[11] Zhang M and Wei L F 2012 Chin. Phys. Lett. 29 080301
[12] Zhao N, Liu S J, Li H, Li F T and Chen W 2012 Chin. Phys. Lett. 29 088401
[13] G?ppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904
[14] Pozar D M 1993 Microwave Engineering (Addison-Wesley Publishing Company)
[15] Gevorgian S, Linnér L J P and Kollberg E L 1995 IEEE Trans. Microwave Theory Tech. 43 772
[16] Watanabe K, Yoshida K, Aoki T and Kohjiro S 1994 Jpn. J. Appl. Phys. 33 5708
[17] Sage J M, Bolkhovsky V, Oliver W D, Turek B and Welander P B 2011 J. Appl. Phys. 109 063915
Related articles from Frontiers Journals
[1] Ying Yang, Ze-Hua Tian, Ji-Liang Jing. Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2020, 37(4): 088401
[2] Xiao-Yu Liu, Yong Zhang, De-Jiao Xia, Tian-Hao Ren, Jing-Tao Zhou, Dong Guo, Zhi Jin. A High-Sensitivity Terahertz Detector Based on a Low-Barrier Schottky Diode[J]. Chin. Phys. Lett., 2017, 34(7): 088401
[3] Xiao-Pin Tang, Zi-Qiang Yang, Zong-Jun Shi, Feng Lan. Design of a Broadband E-Plane Power Combiner Based on Quarter-Arc Bent Rectangular Waveguides for Sub-THz and THz Wave[J]. Chin. Phys. Lett., 2016, 33(08): 088401
[4] Tian-Hao Ren, Yong Zhang, Bo Yan, Rui-Min Xu, Cheng-Yue Yang, Jing-Tao Zhou, Zhi Jin. A High Performance Terahertz Waveguide Detector Based on a Low-Barrier Diode[J]. Chin. Phys. Lett., 2016, 33(06): 088401
[5] Md. Ghulam Saber, Rakibul Hasan Sagor, Md. Ruhul Amin. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques[J]. Chin. Phys. Lett., 2016, 33(01): 088401
[6] REN Tian-Hao, ZHANG Yong, YAN Bo, XU Rui-Min, YANG Cheng-Yue, ZHOU Jing-Tao, JIN Zhi. A 330–500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits[J]. Chin. Phys. Lett., 2015, 32(02): 088401
[7] ZHOU Pin-Jia, WANG Yi-Wen, WEI Lian-Fu. Anomalous Temperature Dependence of the Quality Factor in a Superconducting Coplanar Waveguide Resonator[J]. Chin. Phys. Lett., 2014, 31(06): 088401
[8] YANG Yi-Ming, YUAN Cheng-Wei, QIAN Bao-Liang. Influence of Electric Field Distribution on High-Power Array Antenna Radiation Pattern with Rectangular Aperture[J]. Chin. Phys. Lett., 2014, 31(06): 088401
[9] XIONG Han, HONG Jin-Song, ZHU Qing-Yi, JIN Da-Lin. Compact Ultra-wideband Microstrip Antenna with Metamaterials[J]. Chin. Phys. Lett., 2012, 29(11): 088401
[10] ZHAO Na, LIU Jian-She, LI Hao, LI Tie-Fu, and CHEN Wei. Single and Double Superconducting Coplanar Waveguide Resonators[J]. Chin. Phys. Lett., 2012, 29(8): 088401
[11] YE Long-Fang, **, XU Rui-Min, ZHANG Yong, LIN Wei-Gan . Transmission Characteristics of a Generalized Parallel Plate Dielectric Waveguide at THz Frequencies[J]. Chin. Phys. Lett., 2011, 28(12): 088401
[12] ZHANG Qiang**, YUAN Cheng-Wei, LIU Lie . A Dual-Band Coaxial Waveguide Mode Converter for High-Power Microwave Applications[J]. Chin. Phys. Lett., 2011, 28(6): 088401
[13] SI Li-Ming, SUN Hou-Jun, LV Xin. Numerical Simulations of Backward-to-Forward Leaky-Wave Antenna with Composite Right/Left-Handed Coplanar Waveguide[J]. Chin. Phys. Lett., 2010, 27(3): 088401
[14] LU Zhi-Gang, GONG Yu-Bin, GAI Wei, GAO Peng, GAO Feng, WEI Yan-Yu, WANG Wen-Xiang. Experimental Test of 7.8GHz Power Extractor Using Dielectric Loaded Rectangular Waveguide Structures[J]. Chin. Phys. Lett., 2009, 26(2): 088401
[15] WANG Xiao-Jie, LIU Fu-Kun, ZHAO Lian-Min, JIA Hua, LIU Hong-Bao, KUANGGuang-Li. Design of a TE10-TE30 Rectangular Mode Converter for 4.6GHz LHCD Launcher in the Experimental Advanced Superconducting Tokamak[J]. Chin. Phys. Lett., 2009, 26(2): 088401
Viewed
Full text


Abstract