CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Growth and Scintillation Properties of La(Cl0.05Br0.95)3:Ce Crystal |
BAO Han-Bo, QIN Lai-Shun, DING Yan-Guo, LI Zheng-Guo, SHI Hong-Sheng**, SHU Kang-Ying** |
College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018
|
|
Cite this article: |
BAO Han-Bo, QIN Lai-Shun, DING Yan-Guo et al 2013 Chin. Phys. Lett. 30 088101 |
|
|
Abstract The growth and scintillation properties of La0.97(Cl0.05Br0.95)3:Ce0.03 crystals are reported. A 1-inch-diameter as-grown crystal is achieved by applying the vertical Bridgman technique, and one machined single crystal with sizes 18 mm×8 mm×8 mm is acquired. The scintillation properties of La0.97(Cl0.05Br0.95)3:Ce0.03 crystals are presented. Under the excitation of UV (ultraviolet) light, the crystal exhibits two luminescent peaks centered at 358 nm and 382 nm. The light output is about 62000 ph/MeV while the energy resolution (ΔE/E) of this crystal at 662 keV is 4.55% of the full width at half-maximum. Additionally, the crystal photoluminescence decay time constant is 17.7 ns, which is significantly faster than that of LaBr3:Ce. The results indicate that the LaCl3 and the LaBr3 can form the anion solid solution crystal. The Lax(ClyBr1?y)3:Ce1?x crystal is potentionally a promising scintillator.
|
|
Received: 07 May 2013
Published: 21 November 2013
|
|
PACS: |
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
78.70.Ps
|
(Scintillation)
|
|
|
|
|
[1] Balcerzyk M, Moszyński M and Kapusta M 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 537 50 [2] Van Loef E V D, Dorenbos P and van Eijk C W E 2001 Appl. Phys. Lett. 79 1573 [3] Van Loef E V D, Dorenbos P and van Eijk C W E 2000 Appl. Phys. Lett. 77 1467 [4] Shah K S, Glodo J, Klugerman M, Cirignano L, Moses W W, Derenzo S E and Weber M J 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 76 [5] Glodo J, Moses W W, Higgins W M, van Loef E V D, Wong P, Derenzo S E, Weber M J and Shah K S 2005 IEEE Trans. Nucl. Sci. 52 1805 [6] Chen H B, Yang P Z, Zhou C Y and Jiang C Y 2008 J. Alloys Compd. 449 172 [7] Drozdowski W, Dorenbos P, Bos A J J, Owens A and Quarati F G A 2008 Radiat. Meas. 43 497 [8] Higgins W M, Glodo J, van Loef E V D, Klugerman M, Gupta T, Cirignano L, Wong P and Shah K S 2006 J. Cryst. Growth 287 239 [9] Owens A, Bos A J J, Brandenburg S, Dorenbos P, Drozdowski W, Ostendorf R W, Quarati F G A, Webb A and Welter E 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 158 [10] Srivastava A M, Duclos S J, Deng Q, Leblanc J W, Gao T B, Wang J M and Clarke L L 2005 Scintillator Compositions and Related Processes Article US20050082484 A1 [11] Zhang M R, Zhang C S, Ge Y C, Guo J J, Fan Y H, Lu H, Ding X D and Zhang H M 2007 Cerium Activated Rare Earth Halide Bromide Scintillator and Preparing Method CN101054522 A (in Chinese) [12] Menge P R, Gautier G, Iltis A, Rozsa C and Solovyev V 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 6 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|