Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 085201    DOI: 10.1088/0256-307X/30/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Self-Adjusting Characterization for Steady-State, Direct Current Cathode-Dominated Glow Discharge Plasmas at High Pressures
DING Fang1,2, ZHENG Shi-Jian1, KE Bo1, TANG Zhong-Liang1, ZHANG Yi-Chuan1, YANG Kuan1, XIE Xin-Hua1, ZHU Xiao-Dong1**
1CAS Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
DING Fang, ZHENG Shi-Jian, KE Bo et al  2013 Chin. Phys. Lett. 30 085201
Download: PDF(1222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A steady-state, direct-current high-pressure CH4-H2 glow discharge in a cup-shaped cathode parallel to anode configuration is investigated by using their VI characteristics and CCD images. The discharges display an abnormal glow feature, and an expansion of a negative glow is observed on the cathode sidewall with the increasing discharge current. There exists a dependence of voltage on gas pressure for different fixed currents. The voltage decreases with gas pressure initially, and then increases conversely, which is correlated with the glow states of the cathode sidewall. This study exhibits a self-adjusting characterization for plasmas in cathode fall, which is important for maintaining steady-state, abnormal glow discharge in a relatively high pressure range.
Received: 03 May 2013      Published: 21 November 2013
PACS:  52.70.Ds (Electric and magnetic measurements)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.40.Kh (Plasma sheaths)  
  52.77.Fv (High-pressure, high-current plasmas)  
  52.80.Hc (Glow; corona)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/085201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DING Fang
ZHENG Shi-Jian
KE Bo
TANG Zhong-Liang
ZHANG Yi-Chuan
YANG Kuan
XIE Xin-Hua
ZHU Xiao-Dong
[1] Sciortino S, Lagomarsino S, Pieralli F, Borchi E and Galvanetto E 2002 Diamond Relat. Mater. 11 573
[2] Lee S, Baik Y J and Chae K W 2003 Thin Solid Films 435 89
[3] Ding F, Zhu X D, Zhan R J, Ni T L and Ke B 2009 Appl. Phys. Lett. 95 121501
[4] Kunhardt E E 2000 IEEE Trans. Plasma Sci. 28 189
[5] Lee W S, Chae K W, Eun K Y and Baik Y J 2001 Diamond Relat. Mater. 10 2220
[6] Phelps A V 2001 Plasma Sources Sci. Technol. 10 329
[7] Takaki K, Taguchi D and Fujiwara T 2001 Appl. Phys. Lett. 78 2646
[8] Schoenbach K H and Chen A 1990 J. Appl. Phys. 67 154
[9] Hash D, Bose D, Govindan T R and Meyyappan M 2003 J. Appl. Phys. 93 6284
[10] Bektursunova R M and Graham W G 2000 Phys. Plasmas 7 1331
[11] Borysow J and Phelps A V 1994 Phys. Rev. E 50 1399
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 085201
[2] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 085201
[3] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 085201
[4] Zhao-Wen Ren, Hui Xie, Ying-Ying Zhou. Enhancement of Heat-Resistance of Carbonyl Iron Particles by Coating with Silica and Consequent Changes in Electromagnetic Properties[J]. Chin. Phys. Lett., 2017, 34(10): 085201
[5] N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2017, 34(8): 085201
[6] N. Hasanvand, M. R. Riazifar, R. Alipour, S. Meshkani, M. Ghoranneviss. Improving Plasma Confinement by Controlling Hard X-Ray[J]. Chin. Phys. Lett., 2016, 33(11): 085201
[7] Sharmin Sultana, Jichul Shin. Dynamic Characteristics of a Microhollow Cathode Sustained Discharge with Split Third Electrodes for Potential Flow Application to Flow Velocimetry[J]. Chin. Phys. Lett., 2014, 31(09): 085201
[8] HU Ye-Lin, CHEN Zhao-Quan, **, LIU Ming-Hai**, HONG Ling-Li, LI Ping, ZHENG Xiao-Liang, XIA Guang-Qing**, HU Xi-Wei . Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons[J]. Chin. Phys. Lett., 2011, 28(11): 085201
[9] ZHOU Zi-Chao, WEI Rong**, SHI Chun-Yan, WANG Yu-Zhu**. Observation of Modulation Transfer Spectroscopy in the Deep Modulation Regime[J]. Chin. Phys. Lett., 2010, 27(12): 085201
[10] JI Xiao-Quan, YANG Qing-Wei, LIU Yi, ZHOU Jun, FENG Bei-Bin, YUAN Bao-Shan. First Observation of Neoclassical Tearing Modes in the HL-2A Tokamak[J]. Chin. Phys. Lett., 2010, 27(6): 085201
[11] D. Akbar, S. Bilikmen. Non-Uniform Axial Electric Field in Argon Glow Discharge Plasma[J]. Chin. Phys. Lett., 2006, 23(5): 085201
[12] MA Jie, PU Yi-Kang. Tuning Effect on the Electron Energy Distribution Function of an Inert Gas Mixture in Nitrogen Inductively Coupled Plasma Discharges[J]. Chin. Phys. Lett., 2003, 20(9): 085201
[13] ZHOU Bao-suo, YANG Xuan-zong, WANG Long, FENG Chun-hua, JIANG Di-ming, QI Xia-zhi. Measurement of Plasma Rotation Velocities with Limiter Biasing on the CT-6B Tokamak[J]. Chin. Phys. Lett., 1997, 14(8): 085201
Viewed
Full text


Abstract