Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087101    DOI: 10.1088/0256-307X/30/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Reduction of Efficiency Droop and Modification of Polarization Fields of InGaN-Based Green Light-Emitting Diodes via Mg-Doping in the Barriers
ZHANG Ning**, LIU Zhe, SI Zhao, REN Peng, WANG Xiao-Dong, FENG Xiang-Xu, DONG Peng, DU Cheng-Xiao, ZHU Shao-Xin, FU Bing-Lei, LU Hong-Xi, LI Jin-Min, WANG Jun-Xi
Research and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
Cite this article:   
ZHANG Ning, LIU Zhe, SI Zhao et al  2013 Chin. Phys. Lett. 30 087101
Download: PDF(543KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate that the Mg-doping in barriers can partially screen the polarization fields of InGaN-based green light-emitting diodes. The photocurrent spectra show that the Mg-doping samples have smaller polarization fields and the blue shift of the peak with increasing current is observed. The reduction of polarization fields can be attributed to the screening of the impurity holes generated by the Mg atoms in the barriers. The efficiency droop is sensitive to the Mg-doping concentration in barriers, while the sample with Mg concentration of 5×1019 cm?3 exhibits the lowest efficiency degradation of 12.4% at a high injection current.
Received: 12 April 2013      Published: 21 November 2013
PACS:  71.55.Eq (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.Ea (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ning
LIU Zhe
SI Zhao
REN Peng
WANG Xiao-Dong
FENG Xiang-Xu
DONG Peng
DU Cheng-Xiao
ZHU Shao-Xin
FU Bing-Lei
LU Hong-Xi
LI Jin-Min
WANG Jun-Xi
[1] Phillips J M, Coltrin M E, Crawford M H, Fischer A J, Krames M R, Mach R M, Mueller G O, Ohno Y, Rohwer L E S, Simmons J A and Tsao J Y 2007 Laser Photon. Rev. 1 307
[2] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[3] Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
[4] Nakamura S, Mukai T, Senoh M and Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139
[5] Huang C Y, Yan Q, Zhao Y J, Fujito K, Feezell D, Walle C G, Speck J S, DenBaars S P and Nakamura S 2011 Appl. Phys. Lett. 99 141114
[6] Han S H, Cho C Y, Lee S J, Park T Y, Kim T H, Park S H, Kang S W, Kim J W, Kim Y C and Park S J 2010 Appl. Phys. Lett. 96 051113
[7] Nishida T, Saito H, Kumakura K, Makimoto T and Kobayashi N 2000 Proceedings of International Workshop on Nitride Semiconductors Proceedings of International Workshop on Nitride Semiconductors vol 1 p 725
[8] Jun Y Y, Yi R M, Won Y P, Joon K D and Ju P S 2001 J. Korean Phys. Soc. 38 134
[9] Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 1214
[10] Park S I, Lee J I, Jang D H, Kim H S, Shin D S, Ryu H Y and Shim J I 2012 IEEE J. Quantum Electron. 48 500
[11] Ji Y, Zhang Z H, Tan S T, Ju Z G, Kyaw Z, Hasanov N, Liu W, Sun X W, Demir H V 2013 Opt. Lett. 38 202
[12] Romano L T, Kneissl M, Northrup J E, Van de Walle C G and Treat D W 2001 Appl. Phys. Lett. 79 2734
[13] Kong B H, Cho H K, Kim M Y, Choi R J and Kim B K 2010 J. Cryst. Growth 312 2128
[14] Bochkareva N I, Voronenkov V V, Gorbunov R I, Zubrilov A S, Lelikov Y S, Latyshev P E, Rebane Y T, Tsyuk A I and Shreter Y G 2010 Appl. Phys. Lett. 96 133502
Related articles from Frontiers Journals
[1] Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin. Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology[J]. Chin. Phys. Lett., 2020, 37(9): 087101
[2] Ting-Ting Wang, Xiao Wang, Xiao-Bo Li, Jin-Cheng Zhang, Jin-Ping Ao. Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes[J]. Chin. Phys. Lett., 2019, 36(5): 087101
[3] Jin Xu, Wei Zhang, Meng Peng, Jiang-Nan Dai, Chang-Qing Chen. Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode[J]. Chin. Phys. Lett., 2017, 34(7): 087101
[4] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 087101
[5] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 087101
[6] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 087101
[7] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 087101
[8] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 087101
[9] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 087101
[10] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 087101
[11] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 087101
[12] KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan, QIAO Li-Jun, LIU Hong-Gang, WANG Wei, PAN Jiao-Qing. High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD[J]. Chin. Phys. Lett., 2015, 32(03): 087101
[13] ZHOU Xu-Liang, PAN Jiao-Qing, YU Hong-Yan, LI Shi-Yan, WANG Bao-Jun, BIAN Jing, WANG Wei. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 087101
[14] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 087101
[15] ZHANG Jian-Li, LIU Jun-Lin, PU Yong, FANG Wen-Qing, ZHANG Meng, JIANG Feng-Yi. Effects of Carrier Gas on Carbon Incorporation in GaN[J]. Chin. Phys. Lett., 2014, 31(03): 087101
Viewed
Full text


Abstract