Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 086701    DOI: 10.1088/0256-307X/30/8/086701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation
OUYANG Sheng-De1**, LIU Jing2, XIANG Shao-Hua1, SONG Ke-Hui1**
1Department of Physics and Information Engineering, Huaihua University, Huaihua 418000
2Department of Education Science, Huaihua University, Huaihua 418000
Cite this article:   
OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua et al  2013 Chin. Phys. Lett. 30 086701
Download: PDF(754KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the ground state property of the one-dimensional Bose–Hubbard model using an imaginary time evolving body decimation algorithm. The single-particle density matrix is numerically calculated for a Mott insulating system and a superfluid system separately. By plotting the chemical potential versus the filling n=N/L for U/J=20 and U/J=0.1, we identify the Mott gap for U/J=20 in filling n=1. Lastly, we investigate the occupation number of the Bloch state with quasimomentum for a system deep in the Mott phase and in the superfluid phase respectively. The results indicate Bose condensation in the quasimomentum space.
Received: 11 March 2013      Published: 21 November 2013
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  05.30.Jp (Boson systems)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/086701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/086701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
OUYANG Sheng-De
LIU Jing
XIANG Shao-Hua
SONG Ke-Hui
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] St?ferle T, Moritz H, Schori C, K?hl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[3] Fertig C D, Ohara K M, Huckans J H, Rolston S L, Phillips W D and Porto J V 2005 Phys. Rev. Lett. 94 120403
[4] Mun J, Medley P, Campbell G K, Marcassa L G, Pritchard D E and Ketterle W 2007 Phys. Rev. Lett. 99 150604
[5] Haller E, Hart R, Mark M J, Danzl J G, Reichs?llner L, Gustavsson M, Dalmonte M, Pupillo G and N?gerl H C 2010 Nature 466 597
[6] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
[7] Spielman I B, Phillips W D and Porto J V 2008 Phys. Rev. Lett. 100 120402
[8] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995
[9] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, F?lling S, Pollet L and Greiner M 2010 Science 329 547
[10] Greiner M, Mandel O, H?nsch T W and Bloch I 2002 Nature 419 51
[11] Trotzky S, Pollet L, Gerbier F, Schnorrberger U, Bloch I, Prokofev N V, Svistunov B and Troyer M 2010 Nat. Phys. 6 998
[12] Wu Y and Yang X 2006 J. Opt. Soc. Am. B 23 1888
[13] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[14] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202
[15] Capogrosso-Sansone B, Prokofev N V and Svistunov B V 2007 Phys. Rev. B 75 134302
[16] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741
[17] Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474
[18] Vidal G 2003 Phys. Rev. Lett. 91 147902
[19] Vidal G 2004 Phys. Rev. Lett. 93 040502
[20] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[21] Suzuki M 1990 Phys. Lett. A 146 319
Suzuki M 1991 J. Math. Phys. 32 400
[22] Greiner M, Mandel O, Esslinger T, H?nsch T W and Bloch I 2002 Nature 415 39
[23] Zhou W H, Wang J, Fu L P 2011 Acta Sin. Quantum Opt. 42 705
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 086701
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[3] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[4] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 086701
[5] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 086701
[6] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 086701
[7] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 086701
[8] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 086701
[9] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 086701
[10] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 086701
[11] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 086701
[12] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 086701
[13] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 086701
[14] Qiang Zhu, Bing Wang, De-Zhi Xiong, Bao-Long Lü. Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases[J]. Chin. Phys. Lett., 2016, 33(07): 086701
[15] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 086701
Viewed
Full text


Abstract