CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Ground State Property of a One-Dimensional Bose–Hubbard Model Using Time-Evolving Body Decimation |
OUYANG Sheng-De1**, LIU Jing2, XIANG Shao-Hua1, SONG Ke-Hui1** |
1Department of Physics and Information Engineering, Huaihua University, Huaihua 418000 2Department of Education Science, Huaihua University, Huaihua 418000
|
|
Cite this article: |
OUYANG Sheng-De, LIU Jing, XIANG Shao-Hua et al 2013 Chin. Phys. Lett. 30 086701 |
|
|
Abstract We study the ground state property of the one-dimensional Bose–Hubbard model using an imaginary time evolving body decimation algorithm. The single-particle density matrix is numerically calculated for a Mott insulating system and a superfluid system separately. By plotting the chemical potential versus the filling n=N/L for U/J=20 and U/J=0.1, we identify the Mott gap for U/J=20 in filling n=1. Lastly, we investigate the occupation number of the Bloch state with quasimomentum for a system deep in the Mott phase and in the superfluid phase respectively. The results indicate Bose condensation in the quasimomentum space.
|
|
Received: 11 March 2013
Published: 21 November 2013
|
|
PACS: |
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
|
|
|
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [2] St?ferle T, Moritz H, Schori C, K?hl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403 [3] Fertig C D, Ohara K M, Huckans J H, Rolston S L, Phillips W D and Porto J V 2005 Phys. Rev. Lett. 94 120403 [4] Mun J, Medley P, Campbell G K, Marcassa L G, Pritchard D E and Ketterle W 2007 Phys. Rev. Lett. 99 150604 [5] Haller E, Hart R, Mark M J, Danzl J G, Reichs?llner L, Gustavsson M, Dalmonte M, Pupillo G and N?gerl H C 2010 Nature 466 597 [6] Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404 [7] Spielman I B, Phillips W D and Porto J V 2008 Phys. Rev. Lett. 100 120402 [8] Gemelke N, Zhang X, Hung C L and Chin C 2009 Nature 460 995 [9] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, F?lling S, Pollet L and Greiner M 2010 Science 329 547 [10] Greiner M, Mandel O, H?nsch T W and Bloch I 2002 Nature 419 51 [11] Trotzky S, Pollet L, Gerbier F, Schnorrberger U, Bloch I, Prokofev N V, Svistunov B and Troyer M 2010 Nat. Phys. 6 998 [12] Wu Y and Yang X 2006 J. Opt. Soc. Am. B 23 1888 [13] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [14] Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202 [15] Capogrosso-Sansone B, Prokofev N V and Svistunov B V 2007 Phys. Rev. B 75 134302 [16] Kühner T D and Monien H 1998 Phys. Rev. B 58 R14741 [17] Kühner T D, White S R and Monien H 2000 Phys. Rev. B 61 12474 [18] Vidal G 2003 Phys. Rev. Lett. 91 147902 [19] Vidal G 2004 Phys. Rev. Lett. 93 040502 [20] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546 [21] Suzuki M 1990 Phys. Lett. A 146 319 Suzuki M 1991 J. Math. Phys. 32 400 [22] Greiner M, Mandel O, Esslinger T, H?nsch T W and Bloch I 2002 Nature 415 39 [23] Zhou W H, Wang J, Fu L P 2011 Acta Sin. Quantum Opt. 42 705 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|