Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087102    DOI: 10.1088/0256-307X/30/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions
LI Zhen-Shan1, PAN Hui1**, LÜ Rong2
1Department of Physics and State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191
2Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
LI Zhen-Shan, PAN Hui, Lü Rong 2013 Chin. Phys. Lett. 30 087102
Download: PDF(806KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new scheme of realizing spin-polarized currents in a double quantum dot system. In the presence of Rashba spin-orbit coupling interactions and different Zeeman splittings of each quantum dot, the currents are spin-polarized. The polarization can be controlled by tuning the strength of Rashba spin-orbit coupling and external magnetic fields, which can produce nearly 100% spin-polarized currents. Furthermore, we explain and analyze the mechanism of the strongly spin-polarized currents. Lastly we give two phase diagrams to display our results.
Received: 24 April 2013      Published: 21 November 2013
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  73.21.La (Quantum dots)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhen-Shan
PAN Hui
Lü Rong
[1] Hansen J P et al 2012 Phys. Rev. B 85 035326
[2] Hanson R et al 2007 Rev. Mod. Phys. 79 1217
[3] Li A X and Duan S Q 2012 Chin. Phys. B 21 117201
[4] Xu Z H, Xiao W and Chen Y G 2013 Chin. Phys. Lett. 30 057201
[5] Sakano M et al 2013 Phys. Rev. Lett. 110 107204
[6] Baboux F et al 2013 Phys. Rev. B 87 121303(R)
[7] Grap S, Meden V and Andergassen S 2012 Phys. Rev. B 86 035143
[8] Cavalli A, Malet F, Cremon J C and Reimann S M 2011 Phys. Rev. B 84 235117
[9] Nowak M P et al 2011 Phys. Rev. B 83 245324
[10] Pan H and Zhao Y 2012 J. Appl. Phys. 111 083703
[11] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[12] He Z L et al 2011 Chin. Phys. B 20 117303
[13] Nitta J, Akasaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[14] Heida J P et al 1998 Phys. Rev. B 57 11911
[15] Engels G, Lange J, Schapers Th and Luth H 1997 Phys. Rev. B 55 R1958
[16] Grundler D 2000 Phys. Rev. Lett. 84 6074
[17] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Nature 427 50
[18] Andres A R et al 2012 Phys. Rev. B 86 214519
[19] Avishai Y, Cohen D and Nagaosa N 2010 Phys. Rev. Lett. 104 196601
[20] Bercioux D, Urban D F, Romeo F and Citro R 2012 Appl. Phys. Lett. 101 122405
[21] Wang L Y, Malshukov A G and Chu C S 2012 Phys. Rev. B 85 165201
[22] Huang S M et al 2010 Phys. Rev. Lett. 104 136801
[23] Busl M and Platero G 2010 Phys. Rev. B 82 205304
[24] Laird E A et al 2007 Phys. Rev. Lett. 99 246601
[25] Pioro-Ladriere M et al 2008 Nat. Phys. 4 776
[26] Busl M, Snchez R and Platero G 2010 Phys. Rev. B 81 121306(R)
[27] Snchez R, Lpez-Mons C and Platero G 2008 Phys. Rev. B 77 165312
[28] Hanson R et al 2003 Phys. Rev. Lett. 91 196802
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 087102
[2] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 087102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 087102
[4] Xin Gao, Jian Sun, Xiangang Wan, and Gang Li. Competition of Quantum Anomalous Hall States and Charge Density Wave in a Correlated Topological Model[J]. Chin. Phys. Lett., 2022, 39(7): 087102
[5] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 087102
[6] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 087102
[7] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[8] Yiqing Hao, Yiqing Gu, Yimeng Gu, Erxi Feng, Huibo Cao, Songxue Chi, Hua Wu, and Jun Zhao. Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$[J]. Chin. Phys. Lett., 2021, 38(9): 087102
[9] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 087102
[10] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 087102
[11] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 087102
[12] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 087102
[13] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 087102
[14] Sailong Ju, Maokun Wu, Hao Yang, Naizhou Wang, Yingying Zhang, Peng Wu, Pengdong Wang, Bo Zhang, Kejun Mu, Yaoyi Li, Dandan Guan, Dong Qian, Feng Lu, Dayong Liu, Wei-Hua Wang, Xianhui Chen, Zhe Sun. Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(7): 087102
[15] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 087102
Viewed
Full text


Abstract