Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 084208    DOI: 10.1088/0256-307X/30/8/084208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Novel Scheme for Hundred-Hertz Linewidth Measurements with the Self-Heterodyne Method
PENG Yu**
School of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
PENG Yu 2013 Chin. Phys. Lett. 30 084208
Download: PDF(649KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a novel scheme to accurately determine the hundred-hertz linewidth using the delayed self-heterodyne method, in which the delay time is far less than the coherence time of the laser. This exceeds the former understanding of the delayed self-heterodyne technique, which requires a prohibitively long fiber. The self-heterodyne autocorrelation function and power spectrum are evaluated, and by numerical analysis we ensure that ?3 dB of the power spectrum is applied to the self-heterodyne linewidth measurements. For a laser linewidth of less than 100 Hz, the linewidth can be measured directly by a 10 km fiber, and in a more general case, the linewidth can be deduced from ?20 dB or ?40 dB of the fitting Lorentzian curve.
Received: 17 June 2013      Published: 21 November 2013
PACS:  42.55.Wd (Fiber lasers)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Ah (General laser theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/084208       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/084208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Yu
[1] Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[2] Ludlow A D et al 2008 Science 319 1805
[3] Tamm C et al 2009 Phys. Rev. A 80 043403
[4] Falke S et al 2011 Metrologia 48 399
[5] Harry G M et al 2006 Appl. Opt. 45 1569
[6] Willke B et al 2008 Class. Quantum Grav. 25 114040
[7] Abbott B P et al 2009 Rep. Prog. Phys. 72 076901
[8] Birnbaum K M et al 2005 Nature 436 87
[9] Marshall W et al 2003 Phys. Rev. Lett. 91 130401
[10] Abbott B et al 2009 New J. Phys. 11 073032
[11] Muller H et al 2003 Phys. Rev. Lett. 91 020401
[12] Okoshi T et al 1980 Electron. Lett. 26 630
[13] Richter L E et a1 1986 IEEE J. Quantum Electron. 22 2070
[14] Hartog H et a1 1979 Opt. Quantum Electron. 11 265
[15] Jian S S et a1 2005 Chin. Phys. B 14 2338
[16] Zhang S H et a1 2004 Chin. Phys. B 13 1215
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 084208
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 084208
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084208
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 084208
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 084208
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 084208
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 084208
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 084208
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 084208
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 084208
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 084208
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 084208
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 084208
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 084208
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 084208
Viewed
Full text


Abstract