Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 084206    DOI: 10.1088/0256-307X/30/8/084206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wide-Range Position-Tuning Lasers in Cholesteric Liquid Crystal
DAI Qin1, LI Yong1, WU Jie1, ZHANG Meng1, WU Ri-Na1**, PENG Zeng-Hui2, YAO Li-Shuang2
1School of Science, Shenyang Ligong University, Shenyang 110159
2State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033
Cite this article:   
DAI Qin, LI Yong, WU Jie et al  2013 Chin. Phys. Lett. 30 084206
Download: PDF(648KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A wedge liquid crystal (LC) cell is designed and manufactured, and a dye-doping cholesteric LC laser formed by mutual diffusion of the cholesteric LC with different pitches. A laser that is tunable in the 558–624 nm range is obtained under moderate optical pumping, with a tuning range of 66 nm and a laser spectral tuning resolution of 1 nm, so as to achieve the spatial position of a wide range of tunable lasers. The laser threshold varies at different positions in the device, and the lasing thresholds of the dye-doping cholesteric LC cell at 40 and 9 μm are 18 and 25 μJ/pulse, respectively. The density of the photonic states is simulated in the experimental sample, and the result is in good agreement with the photonic band gap in our experiment, which not only explains the low-threshold laser at the band gap edge, but also predicts the experiment.
Received: 20 May 2013      Published: 21 November 2013
PACS:  42.55.Tv (Photonic crystal lasers and coherent effects)  
  42.79.Kr (Display devices, liquid-crystal devices)  
  42.70.Hj (Laser materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/084206       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/084206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Qin
LI Yong
WU Jie
ZHANG Meng
WU Ri-Na
PENG Zeng-Hui
YAO Li-Shuang
[1] Kopp V I, Zhang Z Q and Genack A Z 2003 Prog. Quantum Electron. 27 369
[2] Schmidtke J and Stille W 2003 Eur. Phys. J. B 31 179
[3] Ozaki M, Matsuhisa Y, Yoshida H, Ozaki R and Fujii A 2007 Phys. Status Solidi 204 3777
[4] Ford A D, Morris S M and Coles H J 2006 Mater. Today 9 36
[5] Li W C, Zheng Z G, Liu Y G et al 2010 Opt. Precis. Eng. 18 1504
[6] Zhang Y and Zhao H B 2009 Opt. Precis. Eng. 17 1798
[7] Ozaki R, Matsui T et al 2003 Appl. Phys. Lett. 82 3593
[8] Huang Y H, Zhou Y and Wu S T 2006 Appl. Phys. Lett. 88 011107
[9] Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R, Cipparrone G, Mazzulla A, Gimenez R, Oriol L and Pinol M 2005 Appl. Phys. Lett. 86 051107
[10] Sonoyama N, Takanishi Y, Ishikawa K and Takezoe H 2007 J. Appl. Phys. 46 874
[11] Furumi S, Yokoyama S, Otomo A and Mashiko S 2004 Appl. Phys. Lett. 84 2491
[12] Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R et al 2004 Adv. Mater. 16 791
[13] Jeong M Y, Wu J W 2010 Opt. Express 18 24221
[14] Eidel'man E D 1999 Phys. Solid State 41 148
[15] Dai Q, Wu R N et al 2011 Opt. Precis. Eng. 50 013601
[16] Blinov L M 2009 JETP Lett. 90 166
[17] Belyakov V A 2008 Ferroelectrics 364 33
[18] Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
Related articles from Frontiers Journals
[1] Qianju Song, Shiwei Dai, Dezhuan Han, Z. Q. Zhang, C. T. Chan, and Jian Zi. PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum[J]. Chin. Phys. Lett., 2021, 38(8): 084206
[2] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 084206
[3] Peng-Chao Zhao, Fan Qi, Ai-Yi Qi, Yu-Fei Wang, Wan-Hua Zheng. Static and Dynamic Analysis of Lasing Action from Single and Coupled Photonic Crystal Nanocavity Lasers[J]. Chin. Phys. Lett., 2017, 34(2): 084206
[4] Meng Xun, Chen Xu, Yi-Yang Xie, Jun Deng, Guo-Qing Jiang, Guan-Zhong Pan, Yi-Bo Dong, Hong-Da Chen. Simulation of Far-Field Properties of Coherent Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2016, 33(04): 084206
[5] CHEN Yue-E, WANG Yong, QU Xi-Long. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(7): 084206
[6] XING Ming-Xin, ZHENG Wan-Hua, ZHOU Wen-Jun, CHEN Wei, LIU An-Jin, WANG Hai-Ling. Slow Light Effect and Multimode Lasing in a Photonic Crystal Waveguide Microlaser[J]. Chin. Phys. Lett., 2010, 27(2): 084206
[7] XIE Yi-Yang, XU Chen, KAN Qiang, WANG Chun-Xia, LIU Ying-Ming, WANG Bao-Qiang, CHEN Hong-Da, SHEN Guang-Di. A Single-Fundamental-Mode Photonic Crystal Vertical Cavity Surface Emitting Laser[J]. Chin. Phys. Lett., 2010, 27(2): 084206
[8] REN Gang, ZHENG Wan-Hua, ZHANG Ye-Jin, XING Ming-Xin, WANG Ke, DU Xiao-Yu, CHEN Liang-Hui. Room-Temperature Photonic Crystal Laser in H3 Cavity on InGaAsP/InP Slab[J]. Chin. Phys. Lett., 2008, 25(3): 084206
[9] MA Xiao-Tao, ZHENG Wan-Hua, REN Gang, CHEN Liang-Hui. Design of Two-Dimensional Photonic Crystal Edge Emitting Laser for Photonic Integrated Circuits[J]. Chin. Phys. Lett., 2006, 23(10): 084206
[10] LIU Xue-Ming, ZHAO Wei, ZHANG Tong-Yi, LU Ke-Qing, SUN Chuan-Dong, WANG Yi-Shan, OUYANG Xian, HOU Xun, CHEN Guo-Fu. Multi-Wavelength Erbium-Doped Fibre Lasers on Assistance of High-Nonlinear Photonic-Crystal Fibres[J]. Chin. Phys. Lett., 2006, 23(7): 084206
[11] LIU Dan-Dong, CHEN Guang-De, XU Zhong-Feng. Analysis of Three Coupled Defects in One-Dimensional Photonic Bandgap Structure[J]. Chin. Phys. Lett., 2006, 23(3): 084206
[12] HE Shao-Long, SHEN Jian-Qi. Nanoscale Lasers Based on Carbon Peapods[J]. Chin. Phys. Lett., 2006, 23(1): 084206
[13] HUANG Xiao-Qin, CUI Yi-Ping. Degeneracy and Split of Defect States in Photonic Crystals[J]. Chin. Phys. Lett., 2003, 20(10): 084206
Viewed
Full text


Abstract