Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 085202    DOI: 10.1088/0256-307X/30/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Numerical Examination of the Effects of Ion Thermal Flow on Plasma Sheath Characteristics
Mansour Khoramabadi1, S. Farhad Masoudi2*
1Department of Physics, Boroujerd Branch, Islamic Azad University, P. O. Box 518, Boroujerd, Iran
2Department of Physics, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran
Cite this article:   
Mansour Khoramabadi, S. Farhad Masoudi 2013 Chin. Phys. Lett. 30 085202
Download: PDF(869KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of ion thermal flow on the electric and hydrodynamic characteristics of a plasma sheath are examined using a multi-fluid model. In comparison with cold plasma, ion pressure is modeled by a power law dependence on the ion density in warm plasma. The pressure force on the ion depends on the ion density, ion temperature, and a nearly constant parameter called the ion polytropic coefficient. Two well-known quantities for this coefficient, γi =1 and 3, are considered, corresponding to isothermal and adiabatic flows, respectively. The numerical calculations show that increasing the ion temperature decreases the sheath thickness and increases the ion impact energy and ion saturation current at the wall. The ion polytropic coefficient has the same effect as the ion temperature and intensifies the ion temperature effects.
Received: 11 March 2013      Published: 21 November 2013
PACS:  52.40.Kh (Plasma sheaths)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/085202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/085202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mansour Khoramabadi
S. Farhad Masoudi
[1] Chen F F 1974 Introduction to Plasma Physics (New York: Plenum)
[2] Bissell R C, Johnson P C and Stangeby P C 1989 Phys. Fluids B 1 1133
[3] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: IOP)
[4] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley and Sons)
[5] Masoudi S F 2007 J. Phys. D: Appl. Phys. 40 6641
[6] Das G C, Singha B and Chutia J 1999 Phys. Plasmas 6 3685
[7] Lei M, Yu Z, Ding W, Liu J and Wang X 2006 Plasma Sci. Technol. 8 544
[8] Alterkop B 2004 J. Appl. Phys. 95 1650
[9] Ghomi H and Khoramabadi M 2010 J. Plasma Phys. 76 247
[10] Ghomi H Khoramabadi M Shukla P K and Ghorannevis M 2010 J. Appl. Phys. 108 063302
[11] Kuhn S, Riemann K U Jelic N Tskhakaya D D, Tskhakaya D and Stanojevic M 2006 Phys. Plasmas 13 013503
[12] Jelic N, Riemann K U, Gyergyek T, Kuhn S, Stanojevic M and Duhovnik J 2007 Phys. Plasmas 14 103506
[13] Sheridan T E and Goree J 1991 Phys. Fluids B 3 2796
Related articles from Frontiers Journals
[1] Bin-Bin Lin, Nong Xiang, Jing Ou, Xiao-Yun Zhao. Energetic Ion Effects on the Ion Saturation Current[J]. Chin. Phys. Lett., 2017, 34(1): 085202
[2] DING Fang, ZHENG Shi-Jian, KE Bo, TANG Zhong-Liang, ZHANG Yi-Chuan, YANG Kuan, XIE Xin-Hua, ZHU Xiao-Dong. Self-Adjusting Characterization for Steady-State, Direct Current Cathode-Dominated Glow Discharge Plasmas at High Pressures[J]. Chin. Phys. Lett., 2013, 30(8): 085202
[3] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 085202
[4] DAI Zhong-Ling, WANG You-Nian** . Nonlinear Plasma Dynamics in Electron Heating of Asymmetric Capacitive Discharges with a Fluid Sheath Model[J]. Chin. Phys. Lett., 2011, 28(7): 085202
[5] HAO Mei-Lan, DAI Zhong-Ling, WANG You-Nian. Simulation of Dual Frequency Capacitive Sheath over a Concave Electrode in Low Pressure[J]. Chin. Phys. Lett., 2009, 26(12): 085202
[6] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium[J]. Chin. Phys. Lett., 2008, 25(11): 085202
[7] LIU Yu, DAI Zhong-Ling, WANG You-Nian. Dust Particle Properties in a Dual-Frequency Driven Sheath[J]. Chin. Phys. Lett., 2008, 25(4): 085202
[8] DAI Zhong-Ling, LIU Chuan-Sheng, WANG You-Nian. Comparison between Dual Radio Frequency- and Pulse-Driven Sheath near Insulating Substrates[J]. Chin. Phys. Lett., 2008, 25(2): 085202
[9] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 085202
[10] WANG Li-Hong, DAI Zhong-Ling, WANG You-Nian. Investigation of Dual Radio-Frequency Driven Sheaths and Ion Energy Distributions Bombarding an Insulating Substrate[J]. Chin. Phys. Lett., 2006, 23(3): 085202
[11] ZOU Xiu. Characteristics of Dust Plasma Sheath in an Oblique Magnetic Field[J]. Chin. Phys. Lett., 2006, 23(2): 085202
[12] WANG Zheng-Xiong, WANG Wen-Chun, LIU Yue, LIU Jin-Yuan, WANG Xiao-Gang. Dust Charging in the Sheath of an Electronegative Plasma[J]. Chin. Phys. Lett., 2004, 21(4): 085202
[13] MAO Ming, WANG You-Nian. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas[J]. Chin. Phys. Lett., 2004, 21(3): 085202
[14] LI Xue-Chun, WANG You-Nian. Secondary-Electron Emission Effects in Plasma Immersion Ion Implantation with Dielectric Substrates[J]. Chin. Phys. Lett., 2004, 21(2): 085202
[15] WANG Zheng-Xiong, LIU Jin-Yuan, ZOU Xiu, LIU Yue, WANG Xiao-Gang. Sheath Structure of an Electronegative Plasma[J]. Chin. Phys. Lett., 2003, 20(9): 085202
Viewed
Full text


Abstract