FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
An Eight-Channel 400 GHz-Spacing Etched Diffraction Grating Multi/Demultiplexer on a Nanophotonic Silicon-on-Insulator Platform |
SHEN Ao1, QIU Chen1, HU Ting1, XU Chao1, JIANG Xiao-Qing1,2, LI Yu-Bo1,2**, YANG Jian-Yi1,2** |
1Department of Information Science and Electronics Engineering, Zhejiang University, Hangzhou 310027 2Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
SHEN Ao, QIU Chen, HU Ting et al 2013 Chin. Phys. Lett. 30 084204 |
|
|
Abstract An eight-channel 400 GHz-spacing planar waveguide multi/demultiplexer employing etched diffraction grating is designed and fabricated on a silicon-on-insulator platform with a 220 nm thick top layer. The design parameters are optimized by scalar diffraction simulation to obtain optimal performance with a small footprint of only 0.75 mm2. A bi-level adiabatic taper is used to connect the input/output waveguide and the slab waveguide so as to reduce the insertion loss and the broadening of the diffraction angle of the propagating light. The device is fabricated in a two-step process with E-beam lithography and dry etching, and the alignment accuracy is 10 nm or even better. Measurements show that the insertion loss is 7.35 dB and the crosstalk between adjacent channels is about ?15 dB. Ways to improve the performance are also investigated in detail.
|
|
Received: 16 May 2013
Published: 21 November 2013
|
|
PACS: |
42.25.Fx
|
(Diffraction and scattering)
|
|
42.79.Dj
|
(Gratings)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.82.-m
|
(Integrated optics)
|
|
|
|
|
[1] Smit M, Cor van Dam 1996 IEEE J. Sel. Top. Quantum Electron. 2 236 [2] Koteles M 1999 SPIE CR71 3 [3] Okamoto K, Moriwaki K and Suzuki S 1995 Electron. Lett. 31 184 [4] Janz S, Balakrishnan A and Charbonneau S 2004 IEEE Photon. Technol. Lett. 16 503 [5] Chandrasekhar S, Zirngibl M and Dentai A G 1995 IEEE Photon. Technol. Lett. 7 1342 [6] He J J, Lamontagne B and Delage A 1998 J. Lightwave Technol. 16 631 [7] Jia K M, Wang W H, Tang Y Z, Yang Y R, Yang J Y, Jiang X Q, Wu Y M, Wang M H and Wang Y L 2005 IEEE Photon. Technol. Lett. 17 378 [8] Li G B, Gong Z, Jia K M, Long W H, Yang J Y, Jiang X Q, Wang Y L and Wang M H 2005 Chin. Phys. Lett. 22 3100 [9] Wang W H, Tang Y Z, Wang Y X, Qu H C, Wu Y M, Li T, Yang J Y, Wang Y L and Liu M 2004 Opt. Quantum Electron. 36 559 [10] Bogaerts W, Baets R and Dumon P 2005 J. Lightwave Technol. 23 401 [11] Bogaerts W, Dumon P and Van Thourhout D 2006 IEEE J. Sel. Top. Quantum Electron. 12 1394 [12] Brouckaert J, Bogaerts W and Dumon P 2007 J. Lightwave Technol. 25 1269 [13] Brouckaert J, Bogaerts W and Selvaraja S 2008 IEEE Photon. Technol. Lett. 20 309 [14] Park S, Kim S G, Park J and Kim G 2012 Opt. Express 20 23582 [15] Okamoto K 2011 OSA/ANIC/Sensors/SL/SOF JTuA1 [16] Horst F, Green W M J and Offrein B J 2009 IEEE Photon. Technol. Lett. 21 1743 [17] Chowdhury D 2000 IEEE J. Sel. Top. Quantum Electron. 6 233 [18] Wang W H 2004 PhD Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences) (in Chinese) [19] Dai D X, Zhou Q C, He S L and He J J 2002 Acta Photon. Sin. 31 980 (in Chinese) [20] Shi Z M, He S L 2002 IEEE J. Sel. Top. Quantum Electron. 8 1179 [21] Lin C T 2010 Opt. Express 18 6108 [22] Dumon P, Bogaerts W and Van Thourhout D 2006 Opt. Express 14 664 [23] Bogaerts W Taillaert D and Luyssaert B 2004 Opt. Express 12 1583 [24] Taillaert D, Van Laere F and Ayre M 2006 Jpn. J. Appl. Phys. 45 6071 [25] Smith M S D and McGreer K A 1999 IEEE Photon. Technol. Lett. 11 84 [26] Wang D Y, Jin G F 2001 J. Lightwave Technol. 19 279 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|