NUCLEAR PHYSICS |
|
|
|
|
Charged Hadron Multiplicity at RHIC and LHC Energies from Color Glass Condensate |
XIANG Wen-Chang1,2, ZHANG Jun-Jie1, CHEN Shi-Guo1**, LIU Wan-Song1, ZHOU Dai-Cui2 |
1College of Physics and Electronics Science, Guizhou Normal University, Guiyang 550001 2Institute of Particle Physics, Huazhong Normal University, Wuhan 430079
|
|
Cite this article: |
XIANG Wen-Chang, ZHANG Jun-Jie, CHEN Shi-Guo et al 2013 Chin. Phys. Lett. 30 082501 |
|
|
Abstract We investigate charged hadron production at RHIC and LHC energies in the framework of color glass condensate. Our study gives a very good description of the experimental data of inclusive charged hadron production in proton–proton collisions at both RHIC and LHC energies. The saturation scale is treated as a free parameter, which will reduce the uncertainties from fitting low-energy experimental data and the modeling of the saturation momentum. We find a reasonable value of the saturation scale Qs ~1 GeV, which is consistent with the theoretical findings. The running coupling effect is taken into account, and it is found that it plays an important role in the description of the experimental data. We provide quantitative predictions of the rapidity dependence of the inclusive charged hadron production for the upcoming LHC experiment in proton–proton collisions at √s=14 TeV.
|
|
Received: 22 March 2013
Published: 21 November 2013
|
|
PACS: |
25.75.-q
|
(Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))
|
|
25.75.Dw
|
(Particle and resonance production)
|
|
12.38.Cy
|
(Summation of perturbation theory)
|
|
|
|
|
[1] Jalilian-Marian J, Kovner A, Leonidov A and Weigert H 1998 Phys. Rev. D 59 014014 [2] Jalilian-Marian J, Kovner A and Weigert H 1998 Phys. Rev. D 59 014015 [3] Kovner A, Milhano J and Weigert H 2000 Phys. Rev. D 62 114005 [4] Iancu E, Leonidov A and McLerran L 2001 Phys. Lett. B 510 133 [5] Gelis F, Iancu E, Jalilian-Marian J and Venugopalan R 2010 Annu. Rev. Nucl. Part. Sci. 60 463 [6] Adler S et al 2005 Phys. Rev. C 71 034908 [7] Alver B et al 2011 Phys. Rev. C 83 024913 [8] Alver C et al 2001 Phys. Rev. Lett. 87 112303 [9] Back B et al 2004 Phys. Rev. Lett. 93 082301 [10] Arsene I et al 2005 Phys. Rev. Lett. 94 032301 [11] Rezaeian A H 2013 Phys. Lett. B 718 1058 [12] Kozlov M, Shoshi A and Xiang W C 2007 J. High Energy Phys. 0710 020 [13] Xiang W C 2010 Eur. Phys. J. A 46 91 [14] Xiang W C, Wang S Q and Zhou D C 2010 Chin. Phys. Lett. 27 072502 [15] Xiang W C, Zhang J J, Zhou D C, Chen S G and Liu W S 2013 Chin. Phys. Lett. 30 062501 [16] Kharzeev D, Levin E and Nardi N 2005 Nucl. Phys. A 747 609 [17] Kharzeev D and Levin E 2001 Phys. Lett. B 523 79 [18] Dumitru A, Kharzeev D, Levin E, Nara Y 2012 Phys. Rev. C 85 044920 [19] Kovchegov Y and Tuchin K 2002 Phys. Rev. D 65 074026 [20] Dokshitzer Y, Khoze V and Troian S 1991 J. Phys. G 17 1585 [21] Khoze V and Ochs W 1997 Int. J. Mod. Phys. A 12 2949 [22] Aamodt K et al 2010 Eur. Phys. J. C 65 111 [23] Aamodt K et al 2010 Eur. Phys. J. C 68 89 [24] Aamodt K et al 2010 Eur. Phys. J. C 68 345 [25] Khachatryan V et al 2010 J. High Energy Phys. 1002 041 [26] Khachatryan V et al 2011 J. High Energy Phys. 1101 079 [27] Khachatryan V et al 2010 Phys. Rev. Lett. 105 022002 [28] Albacete J L and Marquet C 2010 Phys. Lett. B 687 174 [29] Albacete J L, Dumitru A, Fujii H and Nara Y 2013 Nucl. Phys. A 897 1 [30] Balitsky I I 2007 Phys. Rev. D 75 014001 [31] Kovchegov Y and Weigert H 2007 Nucl. Phys. A 784 188 [32] Xiang W C 2009 Phys. Rev. D 79 014012 [33] Rezaeian A H and Sch?fer A 2010 Phys. Rev. D 81 114032 [34] Breitweg J et al 2000 Phys. Lett. B 487 53 Chekanov S et al 2001 Eur. Phys. J. C 21 443 Adloff C et al 2001 Eur. Phys. J. C 21 33 [35] Xiang W C 2010 Phys. Rev. D 81 094004 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|