THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Minimal Ward–Takahashi Vertices and Light Cone Pion Distribution Amplitudes from the GND Quark Model |
LI Chuan1, JIANG Shao-Zhou3, WANG Qing1,2** |
1Department of Physics, Tsinghua University, Beijing 100084 2Center for High Energy Physics, Tsinghua University, Beijing 100084 3College of Physics Science and Technology, Guangxi University, Nanning 530004
|
|
Cite this article: |
LI Chuan, JIANG Shao-Zhou, WANG Qing 2013 Chin. Phys. Lett. 30 081101 |
|
|
Abstract The gauge-invariant, nonlocal, dynamical quark model is shown to generate minimal vertices that satisfy the Ward–Takahashi identities and the flat-like form of the light-cone pion distribution amplitudes. Non-flat form amplitudes can be produced only if we take a finite momentum cutoff and include nonzero pion mass corrections or go beyond the minimal vertices. A by-product of our investigation shows that the variable u appearing in light-cone pion distribution amplitudes is just the standard Feynman parameter in the Feynman parameter integrals.
|
|
Received: 03 May 2013
Published: 21 November 2013
|
|
PACS: |
11.10.Lm
|
(Nonlinear or nonlocal theories and models)
|
|
12.39.-x
|
(Phenomenological quark models)
|
|
13.40.Gp
|
(Electromagnetic form factors)
|
|
|
|
|
[1] Yang H, Wang Q and Lu Q 2002 Phys. Lett. B 532 240 [2] Yang H, Wang Q, Kuang Y P and Lu Q 2002 Phys. Rev. D 66 014019 [3] Cahill R T and Roberts C D 1985 Phys. Rev. D 32 2419 [4] Bowler R D and Birse M C 1995 Nucl. Phys. A 582 655 [5] Zhang H H, Jiang S Z, Lang J Y and Wang Q 2008 Phys. Rev. D 77 055003 [6] Ma Y L and Wang Q 2003 Phys. Lett. B 560 188 Jiang S Z, Zhang Y, Li C and Wang Q 2010 Phys. Rev. D 81 014001 Jiang S Z and Wang Q 2010 Phys. Rev. D 81 094037 Jiang S Z, Zhang Y and Wang Q 2013 Phys. Rev. D 87 094014 [7] Gasser J and Leutwyler H 1984 Ann. Phys. 158 142 Gasser J and Leutwyler H 1985 Nucl. Phys. B 250 465 [8] K ?z?ersü A and Pennington M R 2009 Phys. Rev. D 79 125020 Bashir A, Bermudez R, Chang L and Roberts C 2012 Phys. Rev. C 85 045205 [9] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601 [10] Holdom H and Lewis R 1995 Phys. Rev. D 51 6318 [11] Lepage G P and Brodsky S J 1980 Phys. Rev. D 22 2157 [12] Chernyak V L and Zhitnitsky A R 1982 Nucl. Phys. B 201 492 [13] Arriola E R and Broniowski W 2002 Phys. Rev. D 66 094016 [14] Wu X G and Huang T 2011 Phys. Rev. D 84 074011 Wu X G, Huang T and Zhong T 2013 Chin. Phys. C 37 063105 Wu X G, Huang T and Zhong T 2013 Chin. Phys. Lett. 30 041201 [15] Kotko P and Praszalowicz M 2010 Phys. Rev. D 81 034019 [16] Praszalowicz M and Rostworowski A 2001 Phys. Rev. D 64 074003 [17] Nam S I and Kim H C 2006 Phys. Rev. D 74 076005 Nam S I and Kim H C 2006 Phys. Rev. D 74 096007 [18] Chang L, Clo?t I C, Cobos-Martinez J J, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 110 132001 [19] Beneke M and Feldmann Th 2000 Nucl. Phys. B 592 3 [20] Li C, Jiang S Z and Wang Q 2013 arXiv:1304.3881v1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|