Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 081101    DOI: 10.1088/0256-307X/30/8/081101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Minimal Ward–Takahashi Vertices and Light Cone Pion Distribution Amplitudes from the GND Quark Model
LI Chuan1, JIANG Shao-Zhou3, WANG Qing1,2**
1Department of Physics, Tsinghua University, Beijing 100084
2Center for High Energy Physics, Tsinghua University, Beijing 100084
3College of Physics Science and Technology, Guangxi University, Nanning 530004
Cite this article:   
LI Chuan, JIANG Shao-Zhou, WANG Qing 2013 Chin. Phys. Lett. 30 081101
Download: PDF(482KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The gauge-invariant, nonlocal, dynamical quark model is shown to generate minimal vertices that satisfy the Ward–Takahashi identities and the flat-like form of the light-cone pion distribution amplitudes. Non-flat form amplitudes can be produced only if we take a finite momentum cutoff and include nonzero pion mass corrections or go beyond the minimal vertices. A by-product of our investigation shows that the variable u appearing in light-cone pion distribution amplitudes is just the standard Feynman parameter in the Feynman parameter integrals.
Received: 03 May 2013      Published: 21 November 2013
PACS:  11.10.Lm (Nonlinear or nonlocal theories and models)  
  12.39.-x (Phenomenological quark models)  
  13.40.Gp (Electromagnetic form factors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/081101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/081101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chuan
JIANG Shao-Zhou
WANG Qing
[1] Yang H, Wang Q and Lu Q 2002 Phys. Lett. B 532 240
[2] Yang H, Wang Q, Kuang Y P and Lu Q 2002 Phys. Rev. D 66 014019
[3] Cahill R T and Roberts C D 1985 Phys. Rev. D 32 2419
[4] Bowler R D and Birse M C 1995 Nucl. Phys. A 582 655
[5] Zhang H H, Jiang S Z, Lang J Y and Wang Q 2008 Phys. Rev. D 77 055003
[6] Ma Y L and Wang Q 2003 Phys. Lett. B 560 188
Jiang S Z, Zhang Y, Li C and Wang Q 2010 Phys. Rev. D 81 014001
Jiang S Z and Wang Q 2010 Phys. Rev. D 81 094037
Jiang S Z, Zhang Y and Wang Q 2013 Phys. Rev. D 87 094014
[7] Gasser J and Leutwyler H 1984 Ann. Phys. 158 142
Gasser J and Leutwyler H 1985 Nucl. Phys. B 250 465
[8] K ?z?ersü A and Pennington M R 2009 Phys. Rev. D 79 125020
Bashir A, Bermudez R, Chang L and Roberts C 2012 Phys. Rev. C 85 045205
[9] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601
[10] Holdom H and Lewis R 1995 Phys. Rev. D 51 6318
[11] Lepage G P and Brodsky S J 1980 Phys. Rev. D 22 2157
[12] Chernyak V L and Zhitnitsky A R 1982 Nucl. Phys. B 201 492
[13] Arriola E R and Broniowski W 2002 Phys. Rev. D 66 094016
[14] Wu X G and Huang T 2011 Phys. Rev. D 84 074011
Wu X G, Huang T and Zhong T 2013 Chin. Phys. C 37 063105
Wu X G, Huang T and Zhong T 2013 Chin. Phys. Lett. 30 041201
[15] Kotko P and Praszalowicz M 2010 Phys. Rev. D 81 034019
[16] Praszalowicz M and Rostworowski A 2001 Phys. Rev. D 64 074003
[17] Nam S I and Kim H C 2006 Phys. Rev. D 74 076005
Nam S I and Kim H C 2006 Phys. Rev. D 74 096007
[18] Chang L, Clo?t I C, Cobos-Martinez J J, Roberts C D, Schmidt S M and Tandy P C 2013 Phys. Rev. Lett. 110 132001
[19] Beneke M and Feldmann Th 2000 Nucl. Phys. B 592 3
[20] Li C, Jiang S Z and Wang Q 2013 arXiv:1304.3881v1
Related articles from Frontiers Journals
[1] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 081101
[2] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 081101
[3] Yu Zhang, Ru-Guang Zhou. A Chain of Type II and Its Exact Solutions[J]. Chin. Phys. Lett., 2016, 33(11): 081101
[4] JIA Duo-Jie, ZHANG Jia-Shen. The 't Hooft Coupling and Baryon Mass Splitting in the Large-Nc Quark Model[J]. Chin. Phys. Lett., 2015, 32(11): 081101
[5] XIN Xiang-Peng, CHEN Yong. A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2013, 30(10): 081101
[6] LI Hui, ZHANG Hong-Sheng, ZHANG Yi. A Generalized Semi-Holographic Universe[J]. Chin. Phys. Lett., 2013, 30(8): 081101
[7] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 081101
[8] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 081101
[9] SHI Chang-Guang, HIRAYAMA Minoru,. Exact Bosonic Solutions of the Truncated Skyrme Model[J]. Chin. Phys. Lett., 2010, 27(6): 081101
[10] SHI Chang-Guang. Geometric Property of the Faddeev Model[J]. Chin. Phys. Lett., 2008, 25(3): 081101
[11] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 081101
[12] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 081101
[13] WANG Bin, LIU Yu-Xin. Radial Excitations in the Global Colour Soliton Model[J]. Chin. Phys. Lett., 2007, 24(8): 081101
[14] HU Heng-Chun, ZHU Hai-Dong. New Doubly Periodic Waves of the (2+1)-Dimensional Double Sine-Gordon Equation[J]. Chin. Phys. Lett., 2007, 24(1): 081101
[15] DUAN Wen-Shan, CHEN Jian-Hong, YANG Hong-Juan, SHI Yu-Ren, WANG Hong-Yan. Nonlinear Wave in a Disc-Shaped Bose--Einstein Condensate[J]. Chin. Phys. Lett., 2006, 23(8): 081101
Viewed
Full text


Abstract