CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Band-Gap Energy Model of the Quaternary Alloy InxGayAl1?x?yN using Modified Simplified Coherent Potential Approximation |
ZHAO Chuan-Zhen1,2**,ZHANG Rong 1**, LIU Bin1, LI Ming1, XIU Xiang-Qian1, XIE Zi-Li1, ZHENG You-Dou1 |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing 210093 2School of Electronics and Information Engineering, Tianjin Polytechnics University, Tianjin 300387
|
|
Cite this article: |
ZHAO Chuan-Zhen, ZHANG Rong, LIU Bin et al 2013 Chin. Phys. Lett. 30 076101 |
|
|
Abstract Based on modification of the simplified coherent potential approximation, a model for the band-gap energy of InxGayAl1?x?yN is developed. The parameters of the model are obtained by fitting the experimental band-gap energy of their ternary alloys. It is found that the results agree with the experimental values better than those reported by others, and that the band-gap reduction of InxGayAl1?x?yN with increasing In or Ga content is mainly due to enhanced intraband coupling within the conduction band, and separately within the valence band.
|
|
Received: 11 April 2013
Published: 21 November 2013
|
|
|
|
|
|
[1] Marques M, Teles L K, Ferreira L G, Scolfaro L M R, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 235205 [2] Marques M, Teles L K, Scolfaro L M R, Leite J R, Furthmüller J and Bechstedt F 2003 Appl. Phys. Lett. 83 890 [3] Ban S L and Hasbun J E 1999 Eur. Phys. J. B 8 453 [4] Zhao C Z, Zhang R, Liu B, Fu D Y, Li M, Xiu X Q, Xie Z L and Zheng Y D 2012 Sci. Chin. Phys. Mech. Astron. 55 400 [5] Walukiewicz W, Lia S X, Wu J, Yu K M, Ager I I I J W, Haller E E, Lu H and Schaff W J 2004 J. Cryst. Growth 269 119 [6] Janotti A, Wei S H and Zhang S B 2002 Phys. Rev. B 65 115203 [7] Tsen K T, Liang W, Ferry D K, Lu H, Schaff W J, ?zgür ü Fu Y, Moon Y T, Yun F, Morkoc H and Everitt H O 2005 Superlattices Microstruct. 38 77 [8] Li J, Nam K B, Kim K H, Lin J Y and Jiang H X 2001 Appl. Phys. Lett. 78 61 [9] Feng S W, Cheng Y C, Chung Y Y, Yang C C, Ma K J, Yan C C, Hsu C, Lin J Y and Jiang H X 2003 Appl. Phys. Lett. 82 1377 [10] Chen C H, Chen Y F, Lan Z H, Chen L C, Chen K H, Jiang H X and Lin J Y 2004 Appl. Phys. Lett. 84 1480 [11] McIntosh F G, Boutros K S, Roberts J C, Bedair S M, Piner E L and El-Masry N A 1996 Appl. Phys. Lett. 68 40 [12] Ryu M Y, Chen C Q, Kuokstis E, Yang J W, Simin G, Khan M A, Sim G G and Yu P W 2002 Appl. Phys. Lett. 80 3943 [13] Han J, Figiel J J, Petersen G A, Meyers S M, Crawford M H and Banas M A 2000 Jpn. J. Appl. Phys. 39 2372 [14] Yamaguchi S, Kariya M, Nitta S, Kato H, Takeuchi T, Wetzel C, Amano H and Akasakiet I 1998 J. Cryst. Growth 195 309 [15] Aumer M E, LeBoeuf S L, McIntosh F G, Bedair S M 1999 Appl. Phys. Lett. 75 3315 [16] Marques M, Teles L K, Scolfaro L M R, Ferreira L G and Leite J R 2004 Phys. Rev. B 70 073202 [17] Marques M, Ferreira L G, Teles L K and Scolfaro L M R 2005 Phys. Rev. B 71 205204 [18] Wei W, Dai Y, Yang K S, Guo M and Huang B B 2008 J. Phys. Chem. C 112 15915 [19] Lu J B, Dai Y, Guo M, Wei W, Ma Y D, Han S H and Huang B B 2012 Chem. Phys. Chem. 13 147 [20] Wei S H and Zunger A 1996 Phys. Rev. Lett. 76 664 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|