ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Theoretical Calculation of Vector Correlations of the Reaction D'(2S)+DS(X1 Σ+)→S(1D)+D2 |
WEI Qiang** |
Department of Applied Physics, Chongqing University of Technology, Chongqing 400050
|
|
Cite this article: |
WEI Qiang 2013 Chin. Phys. Lett. 30 073101 |
|
|
Abstract The vector correlations in the title reaction at collision energies of 0.4–1.6 eV are studied by using the quasi-classical trajectory method on an accurate 1A' potential energy surface (PES) to gain insight into the alignment and the orientation of the product molecules. The calculated results are compared with those on 3A" PES and different properties of vector correlations have been found. The influences of the PES and the collision energy on the product vector correlations as well as the reaction mechanism are discussed. The results demonstrate that the deep potential well and the collision energy display large effect on the product vector correlations. The title reaction occurring on 1A' PES is dominantly controlled by indirect insertion mechanism.
|
|
Received: 24 April 2013
Published: 21 November 2013
|
|
PACS: |
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.at
|
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
|
|
|
[1] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445 [2] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323 [3] Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517 [4] Li R J et al 1994 Chem. Phys. Lett. 220 281 [5] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699 [6] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446 [7] Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509 [8] Miranda M P et al 1998 J. Chem. Phys. 108 3142 [9] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201 [10] Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463 [11] Tan R S, L X G and Hu M 2012 Chin. Phys. Lett. 29 123101 [12] Fazio D 2006 J. Chem. Phys. 125 133109 [13] Liu Y F et al 2011 Chin. Phys. B 20 078201 [14] Aoiz F J, Herrero V J and Mirandac M P 2007 Phys. Chem. Chem. Phys. 9 5367 [15] Li X H et al 2009 Phys. Chem. Chem. Phys. 11 10438 [16] Cheng J, Yue X F and Feng H R 2012 Chin. Phys. Lett. 29 043101 [17] Xu Y et al 2009 Chin. Phys. B 18 5308 [18] Li S J et al 2012 Chin. Phys. B 21 013401 [19] Wang L Z et al 2013 Chin. Phys. B 22 043101 [20] Yang T G et al 2013 Commun. Comput. Chem. 1 15 [21] Zhang W Q et al 2010 Chem. Phys. 367 115 [22] Yue X F 2012 Chin. Phys. B 21 073401 [23] Zhang W Q et al 2009 J. Phys. Chem. A 113 4192 [24] Zhao J et al 2010 Sci. Chin. Chem. 53 927 [25] Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197 [26] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404 [27] Inagaki Y et al 1994 Laser Chem. 14 235 [28] Lee S H and Liu K 1998 Chem. Phys. Lett. 290 323 [29] Lee S H and Liu K 2000 Appl. Phys. B 71 627 [30] Lee S H and Liu K 1998 J. Phys. Chem. A 102 8637 [31] Mouret L et al 2004 Phys. Chem. Chem. Phys. 6 4105 [32] Yang H et al 2010 Phys. Chem. Chem. Phys. 12 1271 [33] Yang H et al 2009 Phys. Chem. Chem. Phys. 11 11587 [34] Lü S J, Zhang P Y and He G Z 2012 Chin. Phys. Lett. 29 073401 [35] Alexander S Z et al 2001 J. Chem. Phys. 114 320 [36] Lü S J et al 2012 J. Chem. Phys. 136 094308 [37] Ho T S et al 2002 J. Chem. Phys. 116 4124 [38] Maiti B Schatz G C and Lendvay G 2004 J. Phys. Chem. A 108 8772 [39] Chu T S, Han K L and Schatz G C 2007 J. Phys. Chem. A 111 8286 [40] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431 [41] Zhang Z H et al 2006 Acta Phys. Chim. Sin. 22 557 [42] Guo Y H, Zhang F Y and Ma H Z 2013 Commun. Comput. Chem. 1 99 [43] Guo Y H, Zhang F Y and Ma H Z 2013 Chin. Phys. B 22 053402 [44] Chu T S 2010 J. Comput. Chem. 31 1385 [45] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401 [46] Bernstein R B, Herschbach D R and Levine R D 1987 J. Phys. Chem. 91 5365 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|