Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 074702    DOI: 10.1088/0256-307X/30/7/074702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel
SUN Dong-Ke**, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua**
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189
Cite this article:   
SUN Dong-Ke, JIANG Di, XIANG Nan et al  2013 Chin. Phys. Lett. 30 074702
Download: PDF(576KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An immersed boundary (IB)-lattice Boltzmamm method (LBM) coupled model is utilized to study the particle focusing in a straight microchannel. The LBM is used to solve the incompressible fluid flow over a regular Eulerian grid, while the IB method is employed to couple the bead-spring model which represents the fluid-particle interaction. After model validation, the simulations for hydrodynamic focusing of the single and multi particles are performed. The particles can be focused into the equilibrium positions under the pressure gradient and self-rotation induced forces, and the particle radius and Reynolds number are the key parameters influencing the focusing dynamics. This work demonstrates the potential usefulness of the IB-LBM model in studying the particle hydrodynamic focusing.
Received: 05 March 2013      Published: 21 November 2013
PACS:  47.27.nd (Channel flow)  
  47.11.-j (Computational methods in fluid dynamics)  
  87.85.gf (Fluid mechanics and rheology)  
  04.60.Nc (Lattice and discrete methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/074702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/074702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Dong-Ke
JIANG Di
XIANG Nan
CHEN Ke
NI Zhong-Hua
[1] Amini H, Sollierand E, Weaver W M and DiCarlo D 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11593
[2] Ookawara S, Street D and Ogawa K 2006 Chem. Eng. Sci. 61 3714
[3] D'Avino G, Romeo G, Villone M M, Greco F, Netti P A and Maffettone P L 2012 Lab Chip 12 1638
[4] Prohm C, Gierlak M and Stark H 2012 Eur. Phys. J. E 35 80
[5] Yang W and Zhou K 2012 Chin. Phys. Lett. 29 064702
[6] Qian Y H, d'Humières D and Lallemand P 1992 Europhys. Lett. 17 479
[7] Lallemand P, Luo L S and Peng Y 2007 J. Comput. Phys. 226 1367
[8] Sun D K, Zhu M F, Pan S Y and Raabe D 2011 Comput. Math. Appl. 61 3585
[9] Feng Y T, Han K and Owen D R J 2010 Int. J. Numer. Methods Eng. 81 229
[10] Ladd A J C 1994 J. Fluid Mech. 271 285
[11] Ladd A J C 1994 J. Fluid Mech. 271 311
[12] Chun B and Ladd A J C 2006 Phys. Fluids 18 031704
[13] Ku X K and Lin J Z 2009 Phys. Scr. 80 025801
[14] Kilimnik A, Mao W and Alexeev A 2011 Phys. Fluids 23 123302
[15] Sun D K, Xiang N, Chen K and Ni Z H 2013 Acta Phys. Sin. 62 024703 (in Chinese)
[16] Feng Z G and Michaelides E E 2004 J. Comput. Phys. 195 602
[17] Peskin C S 2002 Acta Numer. 11 479
[18] Fogelson A L and Peskin C S 1988 J. Comput. Phys. 79 50
[19] Zhang J F, Johnson P C and Popel A S 2007 Phys. Biol. 4 285
[20] Krüger T, Varnik F and Raabe D 2011 Comput. Math. Appl. 61 3485
[21] Shen Z and He Y 2012 Chin. Phys. Lett. 29 024703
[22] Xia Y, Lu D T, Liu Y and Xu Y S 2009 Chin. Phys. Lett. 26 034702
[23] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
[24] Tsubota K I and Wada S 2010 Phys. Rev. E 81 011910
[25] Sangani A S and Acrivos A 1982 Int. J. Multiphase Flow 8 193
[26] Chen M, Yao Q, Luo L S 2006 Int. J. Comput. Fluid Dyn. 20 391
[27] Russom A, Gupta A K, Nagrath S, DiCarlo D, Edd J F and Toner M 2009 New J. Phys. 11 075025
Related articles from Frontiers Journals
[1] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 074702
[2] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 074702
[3] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 074702
[4] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 074702
[5] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 074702
[6] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 074702
[7] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 074702
[8] YANG Fan, ZHANG Hui-Qiang, CHAN Cheong-Ki, WANG Xi-Lin. Large Eddy Simulation of Turbulent Channel Flow with 3D Roughness Using a Roughness Element Model[J]. Chin. Phys. Lett., 2008, 25(1): 074702
Viewed
Full text


Abstract