CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition |
LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao** |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
LUO Shuai, JI Hai-Ming, GAO Feng et al 2013 Chin. Phys. Lett. 30 068101 |
|
|
Abstract We demonstrate InAs/InGaAsP/InP quantum dot (QD) lasers grown by metalorganic chemical vapor deposition. The active region of the lasers consists of five layers of InAs QDs. Ridge waveguide lasers with 6 μm width have been fabricated by standard optical lithography and wet etching. Under continuous wave operation at room temperature, a low threshold current density of 447 A/cm2 per QD layer is achieved for a QD laser with a cavity length of 2 mm. Moreover, the lasing redshifts from 1.61 μm to 1.645 μm as the cavity length increases from 1.5 mm to 4 mm. A high characteristic temperature of up to 88 K is obtained in the temperature range between 10°C and 40°C.
|
|
Received: 22 February 2013
Published: 31 May 2013
|
|
|
|
|
|
[1] Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J and Skolnick M S 2004 Electron. Lett. 40 1412 [2] Fathpour S, Mi Z, Bhattacharya P, Kovsh A R, Mikhrin S S, Krestnikov I L, Kozhukhov A V and Ledentsov N N 2004 Appl. Phys. Lett. 85 5164 [3] Ji H M, Yang T, Cao Y L, Xu P F, Gu Y X, Liu Y, Xie L and Wang Z G 2010 Chin. Phys. Lett. 27 034209 [4] Anantathanasarn S et al 2006 Appl. Phys. Lett. 89 073115 [5] Lei W and Jagadish C 2008 J. Appl. Phys. 104 091101 [6] Elias G, L étoublon A, Piron R, Alghoraibi I, Nakkar A, Chevalier N, Tavernier K, Le Corre A, Bertru N and Loualiche S 2009 Jpn. J. Appl. Phys. 48 070204 [7] Li S G, Gong Q, Lao Y F, He K, Li J, Zhang Y G, Feng S L and Wang H L 2008 Appl. Phys. Lett. 93 111109 [8] Lelarge F, Rousseau B, Dagens B, Poingt F, Pommereau F and Accard A 2005 IEEE Photon. Technol. Lett. 17 1369 [9] Gonzalez L, Garcia J M, Garcia R, Briones F, Martinez-Pastor J and Ballesterosc C 2000 Appl. Phys. Lett. 76 1104 [10] Franke D, Moehrle M, Boettcher J, Harde P, Sigmund A and Kuenzel H 2007 Appl. Phys. Lett. 91 081117 [11] Semenova E S, Kulkova I V, Kadkhodazadeh S, Schubert M and Yvind K 2011 Appl. Phys. Lett. 99 101106 [12] Jang J W et al 2004 Appl. Phys. Lett. 85 3675 [13] Michon A, Saint-Girons G, Beaudoin G, Sagnes I, Largeau L and Patriarche G 2005 Appl. Phys. Lett. 87 253114 [14] Kawaguchi K, Ekawa M, Kuramata A, Akiyama T, Ebe H, Sugawara M and Arakawa Y 2004 Appl. Phys. Lett. 85 4331 [15] Yoon S, Moon Y, Lee T W, Yoon E and Kim Y D 1999 Appl. Phys. Lett. 74 2029 [16] Ji H M, Yang T, Cao Y L, Xu P F, Gu Y X, Ma W Q and Wang Z G 2010 Chin. Phys. Lett. 27 027801 [17] Luo S, Ji H M, Yang X G and Yang T 2013 J. Cryst. Growth (accepted) [18] Saito H, Nishi K and Sugou S 2001 Appl. Phys. Lett. 78 267 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|