CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
The Structure and Elastic and Thermodynamic Properties of Cubic-NbH2 under High Pressures from First-Principles Calculations |
LIU Xian-Kun**, TANG Bin |
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 621900
|
|
Cite this article: |
LIU Xian-Kun, TANG Bin 2013 Chin. Phys. Lett. 30 066201 |
|
|
Abstract NbH2 hydride is an important material in hydrogen storage materials. However, until now there have been no experimental and theoretical data on the elastic and thermodynamic properties. The structure and thermodynamic properties of cubic-NbH2 under high temperatures and pressure are investigated by first-principles study based on the pseudo-potential plane-wave density functional theory method using the generalized gradient approximation and quasi-harmonic Debye model. The results show that the calculated structural parameters of NbH2 are in good agreement with the available experimental results and other theoretical data. The obtained elastic constants satisfy the requirement for mechanical stability, indicating that the NbH2 crystal is stable in the investigated pressure and temperature ranges. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the thermodynamic properties of NbH2, such as the thermal expansion coefficient and the heat capacity dependence of temperature and pressure in the ranges 0–1100 K and 0–70 GPa, are also obtained, respectively.
|
|
Received: 21 December 2012
Published: 31 May 2013
|
|
|
|
|
|
[1] Ren W Y et al 2010 Physica B 405 2057 [2] Lewis G J et al 2007 J. Alloys Compd. 446 355 [3] Faure C et al 1982 Vide Les Couches Minces 37 207 [4] Sen Gupta R and Chatterjee S 1982 J. Phys. F: Met. Phys. 12 1088 [5] Faure C et al 1982 Les Couches Minces 37 207 [6] Guo H Z et al 2005 Chin. Phys. Lett. 22 1764 [7] Chang J et al 2008 Chin. Phys. B 17 1377 [8] Chen D et al 2009 Chin. Phys. Lett. 26 016201 [9] Zhu Z L et al 2009 Chin. Phys. Lett. 26 086203 [10] Ephraim Babu K et al 2012 Chin. Phys. Lett. 29 117102 [11] Liu Z M et al 2008 Acta Phys. Sin. 57 4386 (in Chinese) [12] Walter W and Herzig P 2000 J. Phys.: Condens. Matter 12 4535 [13] Sen Gupta R and Chatterjee S 1982 J. Phys. F: Met. Phys. 12 1923 [14] Segall M D et al 2002 J. Phys.: Condens. Matter 14 2717 [15] Hammer B et al 1999 Phys. Rev. B 59 7413 [16] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 [17] Blanco M A et al 2004 Comput. Phys. Commun. 158 57 [18] Blanco M A et al 1996 J. Molec. Struct. Theochem. 368 245 [19] Flórez M et al 2002 Phys. Rev. B 66 144112 [20] Perdew J P et al 1996 Phys. Rev. Lett. 77 3865 [21] Poirier J P 2000 Introduction to the Physics of the Earth's Interior 2nd edn (Oxford: Cambridge University Press) [22] Hill R 1952 Proc. Phys. Soc. London A 65 349 [23] Mueller et al 1986 J. Less-Common Met. 119 115 [24] Sin'ko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989 [25] Wei Y K, Yu J X, Li Z G, Cheng Y and Ji G F 2011 Physica B 406 4476 [26] Liu C M, Chen X R and Ji G F 2011 Comput. Mater. Sci. 50 1571 [27] Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Chin. Phys. B 20 047103 [28] Zhang X D, Ying C H, Quan S Y, Shi G M and Li Z J 2012 Comput. Mater. Sci. 58 12 [29] Einstein A 1907 Ann. Phys. 22 80 [30] Hill R 1952 Proc. Phys. Soc. London Sect. A 65 349 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|