CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
First-Principles Study of Ag-Doped GaAs Nanowires |
WAN Lei1, GAO Tao1**, MA Shi-Jia2, LU Peng-Fei2, LI Peng1 |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
WAN Lei, GAO Tao, MA Shi-Jia et al 2013 Chin. Phys. Lett. 30 066101 |
|
|
Abstract The structural and electronic properties of undoped and Ag-doped unpassivated wurtzite GaAs nanowires (NWs), as well as their stability, are investigated within the first-principles frame. The calculated formation energies show that the single Ag energetically prefers to substitute the surface Ga (Ef=?0.529 eV) under As-rich conditions, and creates a much shallower (0.19 eV above the Fermi) acceptor level, which is of typical p-type character. With the increase in the Ag concentration, the p-type behavior gradually weakens and the n-type character arises. Thus, one can expect to synthesize Ag-doped GaAs NWs for p-type or n-type applications by controlling their Ag concentration and microarrangement.
|
|
Received: 15 October 2012
Published: 31 May 2013
|
|
PACS: |
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
62.23.Hj
|
(Nanowires)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
|
|
|
[1] Xie Y, Jie W Q, Wang T et al 2012 Chin. Phys. Lett. 29 077803 [2] Deng Y, Liu J, Wang Y and Liang L X 2012 Chin. Phys. Lett. 29 086801 [3] Cai F S, Wang J, Yuan Z H and Duan Y Q 2012 J. Power Sources 216 269 [4] Neelgund G M, Oki A and Luo Z P 2012 Colloids Surf. B 100 215 [5] Huang X M, Wu C F, Lu H et al 2012 Chin. Phys. Lett. 29 067302 [6] Jiang W, Gao H and Xu L L 2012 Chin. Phys. Lett. 29 037102 [7] Trung T Q, Tien N T, Kim D et al 2012 Adv. Mater. 24 5254 [8] Kim U C and Jiang X Q 2012 Chin. Phys. Lett. 29 067301 [9] Karageorgopoulos D, Stathatos E and Vitoratos E 2012 J. Power Sources 219 9 [10] Miao X and Li X L 2011 IEEE Electron Device Lett. 32 1227 [11] Dhaka V, Haggren T, Jussila H et al 2012 Nano Lett. 12 1912 [12] Breuer S, Hilse M, Geelhaar L and Riechert H 2011 J. Cryst. Growth 323 311 [13] Rieger T, Heiderich S, Lenk S et al 2012 J. Cryst. Growth 353 39 [14] Chen K, He J J, Li M Y, LaPierre R 2012 Chin. Phys. Lett. 29 036105 [15] Cahangirov S and Ciraci S 2009 Phys. Rev. B 79 165118 [16] Chen H X, Shi D N, Qi J S, Jia J M and Wang B L 2009 Phys. Lett. A 373 371 [17] Ghaderi N, Peressi M, Binggeli N and Akbarzadeh H 2010 Phys. Rev. B 81 155311 [18] Sadowski T and Ramprasad R 2010 J. Mater. Sci. 45 5463 [19] Wang G P, Chu S, Zhan N, Zhou H M and Liu J L 2011 Appl. Phys. A 103 951 [20] Chen R Q, Zou C W, Bian J M, Sandhu A and Gao W 2011 Nanotechnology 22 105706 [21] Zhang F C, Zhang W H, Dong J T and Zhang Z Y 2011 Chin. Phys. Lett. 28 126102 [22] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 [23] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [26] Li Y L, Zhao X and Fan W L 2011 J. Phys. Chem. C 115 3552 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|