Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 065204    DOI: 10.1088/0256-307X/30/6/065204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Hydrogen Generation from the Dissociation of Water Using Microwave Plasmas
Yong Ho Jung**, Soo Ouk Jang, Hyun Jong You
Plasma Technology Research Center, National Fusion Research Institute, Jeonbuk 573-540, Korea
Cite this article:   
Yong Ho Jung, Soo Ouk Jang, Hyun Jong You 2013 Chin. Phys. Lett. 30 065204
Download: PDF(553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hydrogen is produced by direct dissociation of water vapor, i.e., splitting water molecules by the electrons in water plasma at low pressure (<10–50 Torr) using microwave plasma discharge. This condition generates a high electron temperature, which facilitates the direct dissociation of water molecules. A microwave plasma source is developed, utilizing the magnetron of a microwave oven and a TE10 rectangular waveguide. The quantity of the generated hydrogen is measured using a residual gas analyzer. The electron density and temperature are measured by a Langmuir probe, and the neutral temperature is calculated from the OH line intensity.
Received: 30 January 2013      Published: 31 May 2013
PACS:  52.50.Dg (Plasma sources)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  88.30.E- (Hydrogen production with renewable energy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/065204       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/065204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong Ho Jung
Soo Ouk Jang
Hyun Jong You
[1] Yurum Y 1994 Proceedings of the NATO Advanced Study Institute on Hydrogen Energy System, Utilization of Hydrogen and Future Aspects (Turkey)
[2] Springmann S, Friedrich G, Himmen M, Sommer M and Eigenberger G 2002 Appl. Catal. A 235 101
[3] Deluga G A, Salge J R, Schmidt L D and Verykios X E 2004 Science 303 993
[4] D O E 2004 The Hydrogen Economy: Opportunities, Costs, Barriers and RD Needs (Washington DC: National Academy Press)
[5] Nakajima H, Sakurai M, Ikenoya K, Hwang G J, Onuki K and Simizu S 1999 The 7th International Conference on Nuclear Engineering (Japan)
[6] Roth J R 1995 Industrial Plasma Engineering (Bristol and Philadelphia: Institute of Physics Publishing)
[7] Langmuir I and Mott-Smith H M 1923 Gen. Electr. Rev. 26 731
[8] Mutaf-Yardimci O, Saveliev A V, Fridman A A and Kennedy L A 1998 Int. J. Hydrogen Energy 23 1109
[9] Deminsky M, Jivotov V, Potapkin B and Rusanov V 2002 Pure Appl. Chem. 74 423
[10] Thanyachotpaiboon K, Chavadej S, Caldwell T A, Lobban L L and Mallinson R G 1998 AICHE J. 44 2252
[11] Boudesocque N, Vandensteendam C, Lafon C, Girold C and Baronnet J M 2006 The 16th World Hydrogen Energy Conference (France)
[12] Kabashima H, Einaga H and Futamura S 2001 Chem. Lett. 30 1314
[13] Kirkpatrick M J and Locke B R 2005 Indust. Eng. Chem. Res. 44 4243
[14] Koo I G, Choi M Y, Kim J H, Cho J H and Lee W M 2008 Jpn. J. Appl. Phys. 47 4705
[15] Sekiguchi H and Mori Y 2003 Thin Solid Films 435 44
[16] Chen X, Suib S L, Hayashi Y and Matsumoto H 2001 J. Catal. 201 198
[17] Hueso J L, Rico V J, Cotrino J, Mateos J M J and Elipe A R G 2009 Environ. Sci. Technol. 43 2557
[18] Itikawa Y and Mason N 2005 J. Phys. Chem. Ref. Data 34 1
[19] Lin T L 2001 Proc. 2001 International Workshop on Plasma Processing for Nuclear Applications (Korea)
[20] Jung Y H and Chung K S 2002 J. Korean Phys. Soc. 40 856
[21] Moisan M and Pelletier F 1992 Microwave Excited Plasmas (London: Elsevier)
[22] Chen F F 1965 Electric Probes in Plasma Diagnostic Techniques (New York: Academic Press)
[23] Izarra C 2000 J. Phys. D: Appl. Phys. 33 1697
[24] Pellerin S, Cormiery J M, Richardy F, Musiolz K and Chapelle J 1996 J. Phys. D: Appl. Phys. 29 726
[25] Diecke G H and Crosswhite H M 1962 J. Quant. Spectrosc. Radiat. Transfer 2 97
[26] Craig J S, Salit M L and Reader J 1996 Appl. Opt. 35 74
[27] Raud J, Laan M and Jogi I 2011 J. Phys. D: Appl. Phys. 44 345201
[28] Bruggemann P, Schram D C, Kong M G and Leys C 2009 Plasma Process Polym. 6 751
[29] Verreycken T, Schram D C, Leys C and Bruggemann P 2010 Plasma Sources Sci. Technol. 19 045004
Related articles from Frontiers Journals
[1] WANG Zhong, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong. Spectroscopic Diagnostics of Atmospheric Argon Microwave Plasma Based on an Inductive Coupling Window-Rectangular Resonator[J]. Chin. Phys. Lett., 2014, 31(05): 065204
[2] WANG Zhong, ZHANG Gui-Xin, LIU Cheng, JIA Zhi-Dong. Comparative Study on Excitation Temperature, Electron Temperature and Electron Density in an Atmospheric Argon Microwave Plasma[J]. Chin. Phys. Lett., 2014, 31(05): 065204
[3] CHEN Wei, HUANG Jun, DU Ning, LIU Xiao-Di, LV Guo-Hua, WANG Xing-Quan, ZHANG Guo-Ping, GUO Li-Hong, YANG Si-Ze. Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush[J]. Chin. Phys. Lett., 2012, 29(7): 065204
[4] A. M. A. Amry*,V. J. Law,I. W. Boyd. Optical Emission Analysis of Molecular Nitrogen by Using a Self-Resonating Dielectric Barrier Plasma Reactor[J]. Chin. Phys. Lett., 2012, 29(5): 065204
[5] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 065204
[6] NI Guo-Hua, MENG Yue-Dong, CHENG Cheng, LAN Yan. Characteristics of a Novel Water Plasma Torch[J]. Chin. Phys. Lett., 2010, 27(5): 065204
[7] LAN Chao-Hui, HU Xi-Wei, JIANG Zhong-He, LIU Ming-Hai. Effect of Air Gap on Uniformity of Large-Scale Surface-Wave Plasma[J]. Chin. Phys. Lett., 2009, 26(11): 065204
[8] GAO Wei, SUN Bin, DING Zhen-Feng. Attachment Instabilities of SF6 Inductively Coupled Plasmas under Different Coupling Intensities[J]. Chin. Phys. Lett., 2009, 26(6): 065204
[9] LAN Chao-Hui, HU Xi-Wei, LIU Ming-Hai. Numerical Study of Spontaneous Outspread of Large-Scale Surface-Wave Plasma Excited by Slot-Antenna Array[J]. Chin. Phys. Lett., 2009, 26(3): 065204
[10] LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 065204
[11] LI Lin-Sen, XU Xu, LIU Feng, ZHOU Qian-Hong, NIE Zong-Fu, LIANG Yi-Zi, LIANG Rong-Qing. Improvement of Uniformity of Inductively Coupled Plasma with a one Spiral Antenna[J]. Chin. Phys. Lett., 2008, 25(6): 065204
[12] LIANG Yi-Zi, OU Qiong-Rong, LIANG Bo, LIANG Rong-Qing. Large Volume and High Density Surface Wave Plasmas Sustained by Two Microwave Launchers[J]. Chin. Phys. Lett., 2008, 25(5): 065204
[13] LIU Liang, ZHANG Gui-Xin, FENG Jian, WANG Xin-Xin, LUO Cheng-Mu. A Microwave Air Plasma Source under Atmospheric Pressure[J]. Chin. Phys. Lett., 2008, 25(3): 065204
[14] WANG Yong-Qing, PU Yong-Ni, SUN Rong-Xia, TANG Yu-Jun, CHEN Wen-Jun, LOU Jian-Zhong, MA Wen. A Microfabricated Inductively Coupled Plasma Excitation Source[J]. Chin. Phys. Lett., 2008, 25(1): 065204
[15] XIA Sheng-Guo, HE Jun-Jia, LIU Ke-Fu. Power Consideration for Pulsed Discharges in Potassium Seeded Argon[J]. Chin. Phys. Lett., 2007, 24(6): 065204
Viewed
Full text


Abstract