Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 056801    DOI: 10.1088/0256-307X/30/5/056801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Formation and Characterization of GaN Hexagonal Pyramids
ZHANG Shi-Ying, XIU Xiang-Qian**, LIN Zeng-Qin, HUA Xue-Mei, XIE Zi-Li, ZHANG Rong, ZHENG You-Dou
Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Shi-Ying, XIU Xiang-Qian, LIN Zeng-Qin et al  2013 Chin. Phys. Lett. 30 056801
Download: PDF(879KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {1011} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.
Received: 30 January 2013      Published: 31 May 2013
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  78.30.Fs (III-V and II-VI semiconductors)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/056801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/056801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shi-Ying
XIU Xiang-Qian
LIN Zeng-Qin
HUA Xue-Mei
XIE Zi-Li
ZHANG Rong
ZHENG You-Dou
[1] Fu D J, Park Y S, Panin G N and Kang T W 2005 Jpn. J. Appl. Phys. 44 L342
[2] Ward B L, Nam O H, Hartman J D, English S L, McCarson B L, Schlesser R, Sitar Z, Davis R F and Nemanich R J 1998 J. Appl. Phys. 84 5238
[3] Jiang H X, Lin J Y, Zeng K C and Yang W 1999 Appl. Phys. Lett. 75 763
[4] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
[5] Tachibana K, Someya T, Ishida S and Arakawa Y 2000 Appl. Phys. Lett. 76 3212
[6] Jo D W, Ok J E, Yun W, Jeon H S, Lee G S, Jung S G, Bae S M, Ahn H S and Yang M 2012 Jpn. J. Appl. Phys. 51 01AF03
[7] Kozawa T, Ohwaki T, Taga Y and Sawaki N 1999 Appl. Phys. Lett. 75 3330
[8] Cho Y H, Kim H M, Kang T W, Song J J and Yang W 2002 Appl. Phys. Lett. 80 1141
[9] Zeng K C, Lin J Y, Jiang H X and Yang W 1999 Appl. Phys. Lett. 74 1227
[10] Liu Q K, Hoffmann A, Siegle H, Kaschner A, Thomsen C, Christen J and Bertram F 1999 Appl. Phys. Lett. 74 3122
[11] Kim T, Kim J, Yang M S, Lee S, Park Y, Chung U I and Cho Y 2010 Appl. Phys. Lett. 97 241111
[12] Kim T, Kim J, Yang M, Lee S, Park Y and Chung U 2010 Conference on Lasers and Electro-Optic (California, San Jose 16–21 May 2010) CTuNN2
[13] Kim T, Kim J, Yang M, Lee S, Park Y, Ko Y and Cho Y 2011 Conference on Lasers and Electro-Optic (Maryland, Baltimore 1–6 May 2011) CMA4
[14] Kim T, Kim J, Yang M, Park Y, Chung U I, Ko Y and Cho Y 2012 Conference on Lasers and Electro-Optic (Maryland, Baltimore 6–11 May 2012) ATh5A.5
[15] Bardwell J A, Foulds I G, Webb J B, Tang H, Fraser J, Moisa S and Rolfe S J 1999 J. Electron. Mater. 28 L24
[16] Kolthoff I M and Miller I K 1951 J. Am. Chem. Soc. 73 3055
[17] Gomer R 1961 Field Emission and Field Ionization (Cambridge: Harvard University Press)
[18] Li S F, Fuendling S, Wang X, Merzsch S, Al-Suleiman M A M, Wei J D, Wehmann H H, Waag A, Bergbauer W and Strassburg M 2011 Cryst. Growth Des. 11 1573
[19] Park S H 2002 J. Appl. Phys. 91 9904
[20] Hartono H, Soh C B, Chow S Y, Chua S J and Fitzgerald E 2007 Appl. Phys. Lett. 90 171917
[21] Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503
[22] Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J and Scherer A 1993 Appl. Phys. Lett. 63 2174
[23] Windisch R, Dutta B, Kuijk M, Knobloch A, Meinlschmidt S, Schoberth S, Kiesel P, Borghs G, Do?hler G H and Heremans P 2000 IEEE Trans. Electron Devices 47 1492
Related articles from Frontiers Journals
[1] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 056801
[2] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 056801
[3] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 056801
[4] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 056801
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 056801
[6] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 056801
[7] Xiao-Qin Zhu, Rui Zhang, Yi-Feng Hu, Tian-Shu Lai, Jian-Hao Zhang, Hua Zou, Zhi-Tang Song. Crystallization Process of Superlattice-Like Sb/SiO$_{2}$ Thin Films for Phase Change Memory Application[J]. Chin. Phys. Lett., 2018, 35(5): 056801
[8] Hui-Zhen Guo, An-Quan Jiang. Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties[J]. Chin. Phys. Lett., 2018, 35(2): 056801
[9] Yi Ren, Fang Cheng. Ballistic Transport through a Strained Region on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2017, 34(2): 056801
[10] Fang Cheng, Bing He. Anisotropic Ballistic Transport through a Potential Barrier on Monolayer Phosphorene[J]. Chin. Phys. Lett., 2016, 33(05): 056801
[11] Long Du, Yong-Long Wang, Guo-Hua Liang, Guang-Zhen Kang, Hong-Shi Zong. Schr?dinger Equation of a Particle on a Rotating Curved Surface[J]. Chin. Phys. Lett., 2016, 33(03): 056801
[12] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 056801
[13] ZHANG Zhi-Qiang, LIU Yi-Peng, DAI Yan-Feng, CHEN Jiang-Shan, MA Dong-Ge, ZHANG Hong-Mei. High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers[J]. Chin. Phys. Lett., 2014, 31(04): 056801
[14] DENG Yuan, LIU Jing, WANG Yao, and LIANG Li-Xing. Sacrifice-Template Synthesis of CdTe Nanorod Arrays in Glycol via a Solvothermal Process[J]. Chin. Phys. Lett., 2012, 29(8): 056801
[15] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 056801
Viewed
Full text


Abstract