Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 054211    DOI: 10.1088/0256-307X/30/5/054211
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Spatial Correlation Properties of Tightly Focused J0-Correlated Azimuthally Polarized Vortex Beams
RAO Lian-Zhou**, LIN Hui-Chuan, SUN Qing-Quan
College of Electromechanical Engineering, Sanming University, Sanming 365004
Cite this article:   
RAO Lian-Zhou, LIN Hui-Chuan, SUN Qing-Quan 2013 Chin. Phys. Lett. 30 054211
Download: PDF(923KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on vectorial Debye diffraction theory, the spatial correlation properties in the focal region of a J0 -correlated azimuthally polarized vortex beam through a high numerical aperture (NA) are analyzed. The expressions for a pair of points on the axis of symmetry and for a pair of points in the focal plane are derived. It is found that the longitudinal and transverse coherence lengths in the focal region change with the variation in the topological charge and coherence parameter of the vortex field, together with the NA values. In addition, the degree of coherence is shown to possess phase singularities.
Received: 10 January 2013      Published: 31 May 2013
PACS:  42.25.Kb (Coherence)  
  42.25.Ja (Polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/054211       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/054211
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Lian-Zhou
LIN Hui-Chuan
SUN Qing-Quan
[1] Palacios D M et al 2004 Phys. Rev. Lett. 92 143905
[2] Tao S H et al 2006 Opt. Express 14 535
[3] Rao L et al 2007 Chin. Phys. Lett. 24 1252
[4] Shu J et al 2009 Chin. Phys. Lett. 26 024207
[5] Li J et al 2010 Chin. Phys. Lett. 27 024205
[6] Zhan Q 2006 Opt. Lett. 31 867
[7] Rao L et al 2009 Opt. Laser Technol. 41 241
[8] Hao X et al 2010 Opt. Lett. 35 3928
[9] Kang H et al 2010 Opt. Express 18 10813
[10] Fang G et al 2012 Opt. Laser Technol. 44 441
[11] Friberg A T and Turunen J 1988 J. Opt. Soc. Am. A 5 713
[12] Turunen J and Friberg A T 1986 Opt. Laser Technol. 18 256
[13] Borghi R 1999 IEEE J. Quantum Electron. 35 849
[14] Gori F and Guattari G 1987 Opt. Commun. 64 311
[15] Rao L et al 2008 Opt. Commun. 281 1358
[16] Wang W et al 1997 J. Opt. Soc. Am. A 14 491
[17] Liu P et al 2011 Opt. Commun. 284 909
[18] Zhang Z et al 2008 Opt. Lett. 33 49
[19] Chen B et al 2009 J. Opt. Soc. Am. A 26 862
[20] Guo L et al 2010 Chin. Opt. Lett. 8 520
[21] Dong Y et al 2011 Appl. Phys. B 105 405
[22] Li J et al 2012 Opt. Commun. 285 3403
[23] Fischer D G and Visser T D 2004 J. Opt. Soc. Am. A 21 2097
[24] Rao L and Pu J 2007 J. Opt. Soc. Am. A 24 2242
[25] Liu P et al 2010 Opt. Laser Technol. 42 99
[26] Brown D P and Brown T G 2008 Opt. Express 16 20418
[27] Guo L et al 2011 Opt. Laser Technol. 43 895
[28] Gu M 2000 Advanced Optical Imaging Theory (Berlin: Springer)
[29] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University )
[30] Palma C et al 1996 Opt. Commun. 125 113
Related articles from Frontiers Journals
[1] Xin Ni, Kunpeng Jia, Xiaohan Wang, Huaying Liu, Jian Guo, Shu-Wei Huang, Baicheng Yao, Nicolò Sernicola, Zhenlin Wang, Xinjie Lv, Gang Zhao, Zhenda Xie, and Shi-Ning Zhu. Broadband Sheet Parametric Oscillator for $\chi^{(2)}$ Optical Frequency Comb Generation via Cavity Phase Matching[J]. Chin. Phys. Lett., 2021, 38(6): 054211
[2] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 054211
[3] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 054211
[4] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 054211
[5] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 054211
[6] Ya-Ya Mao, Chong-Qing Wu, Xin-Zhi Sheng, Bo Liu, Rahat Ullah, Feng Tian. Multi-Channel NRZ/RZ-DPSK to CSRZ-DPSK Format Conversion Based on Nonlinear Polarization Rotation of SOA[J]. Chin. Phys. Lett., 2017, 34(10): 054211
[7] Chuan-Wei Liu, Jin-Chuan Zhang, Fang-Liang Yan, Zhi-Wei Jia, Zhi-Bin Zhao, Ning Zhuo, Feng-Qi Liu, Zhan-Guo Wang. External Cavity Tuning of Coherent Quantum Cascade Laser Array Emitting at $\sim$7.6μm[J]. Chin. Phys. Lett., 2017, 34(3): 054211
[8] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 054211
[9] Fei-Fei Lu, Chun-Fang Wang. Anderson Localization in the Induced Disorder System[J]. Chin. Phys. Lett., 2016, 33(07): 054211
[10] Ya-Ya Mao, Xin-Zhi Sheng, Chong-Qing Wu, Kuang-Lu Yu. Broad-Band All-Optical Wavelength Conversion of Differential Phase-Shift Keyed Signal Using an SOA-Based Nonlinear Polarization Switch[J]. Chin. Phys. Lett., 2016, 33(03): 054211
[11] Xing Wei, Bin Chen, Chun-Fang Wang. Transverse Localization of Light in 1D Self-Focusing Parity-Time-Symmetric Optical Lattices[J]. Chin. Phys. Lett., 2016, 33(03): 054211
[12] MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing, ZHANG Tian-Yong, WANG Ying. Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD[J]. Chin. Phys. Lett., 2015, 32(11): 054211
[13] WEN Feng, ZHANG Xun, YUAN Chen-Zhi, LI Chang-Biao, WANG Jing-Da, ZHANG Yan-Peng. Visibility and Resolution Enhancement of Fourth-Order Ghost Interference with Thermal Light[J]. Chin. Phys. Lett., 2015, 32(01): 054211
[14] WEN Feng, ZHANG Xun, XUE Xin-Xin, SUN Jia, SONG Jian-Ping, ZHANG Yan-Peng. Fourth-Order Spatial Correlation of Thermal Light[J]. Chin. Phys. Lett., 2014, 31(11): 054211
[15] XIAO Jun-Jun, FANG Chen, HAN Xiao-Chun, ZHAO Jian-Kang, ZENG Gui-Hua. Distance Ranging Based on Quantum Entanglement[J]. Chin. Phys. Lett., 2013, 30(10): 054211
Viewed
Full text


Abstract