FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Passively Mode-Locked Erbium-Doped Fiber Laser Based on a Single-Wall Carbon Nanotube Polymer |
F. Ahmad1,2, S. W. Harun1,3**, R. M. Nor4, N. R. Zulkepely4, H. Ahmad3, P. Shum5 |
1Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia 2Department of Electrical Engineering, Universiti Teknologi Malaysia, Kuala 54100 Lumpur, Malaysia 3Photonics Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia 4Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia 5OPTIMUS, School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
|
|
Cite this article: |
F. Ahmad, S. W. Harun, R. M. Nor et al 2013 Chin. Phys. Lett. 30 054210 |
|
|
Abstract We demonstrate a simple, compact and low-cost mode-locked erbium-doped fiber laser (EDFL) using a single-wall carbon nanotube (SWCNT) poly-ethylene oxide (PEO) composite as a passive saturable absorber (SA). The composite with an SWCNT concentration of 18wt% is prepared by mixing the SWCNT homogeneous solution with a diluted PEO polymer solution. A droplet of the polymer composite is applied on the fiber ferrule end, which is then mated to another clean ferrule connector to construct an SA. The SA is then integrated into the laser system to self-start stable mode locking at 1557 nm without employing a polarization controller. The EDFL generates a stable soliton pulse train with a duration of 0.81 ps, repetition rate of 44 MHz and average output power of 92.4 μW at a 980 nm pump power of 26.8 mW. The soliton laser starts to lase at a pump power threshold of 14.6 mW.
|
|
Received: 09 January 2013
Published: 31 May 2013
|
|
PACS: |
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
|
|
|
[1] Zhang S M, Lü F Y, Gong Y D, Zhou Z Q, Yang X F and Lü C 2005 Chin. Phys. 14 1839 [2] Yang L, Feng B H, Zhang Z G, Gaebler V, Liu B N and Eichler H 2003 Chin. Phys. 12 886 [3] Teng B T, Jiang S Y, Yang P F, Hu J M and Wu F M 2009 Acta Phys. Sin. 30 605 (in Chinese) [4] Yang L Z, Wang Y C, Chen G F, Wang Y S and Zhao W 2007 Chin. Phys. Lett. 24 944 [5] Ismail M A, Tan S J, Shahabuddin N S, Harun S W, Arof H and Ahmad H 2012 Chin. Phys. Lett. 29 054216 [6] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 1 [7] Wang F, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I and Ferrari A C 2008 Nat. Nanotechnol. 3 738 [8] Rozhin A G, Sakakibara Y, Namiki S, Tokumoto M and Kataura H 2006 Appl. Phys. Lett. 88 051118 [9] Sun Z, Rozhin A G, Wang F, Scardaci V, Milne W, White I, Hennrich F and Ferrari A C 2008 Appl. Phys. Lett. 93 061114 [10] Chatterjee T, Yurekli K, Hadjiev V G and Krishnamoorti R 2005 Adv. Funct. Mater. 15 1832 [11] Park M, Kim H, Youngblood J P, Han S W, Verplogen E and Hart A J 2011 Nanotechnology 22 415703 [12] Maultzsch J, Reich S and Thomsen C 2002 Phys. Rev. B 65 233402 [13] Wang F, Rozhin A G, Sun Z, Scardaci V, Penty R V, White I H and Ferrari A C 2008 Int. J. Mater. Form. 1 107 [14] Dennis M L and Duling I N 1994 IEEE J. Quantum Electron. 30 1469 [15] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803 [16] Sun Z, Rozhin A G, Wang F, Hasan T, Popa D, O'Neill W and Ferrari A C 2009 Appl. Phys. Lett. 95 253102 [17] Kieu K and Mansuripur M 2007 Opt. Lett. 32 2242 [18] Choi S Y, Cho D K, Song Y W, Oh K, Kim K, Rotermund F and Yeom D I 2012 Opt. Express 20 5652 [19] Martinez A, Kazuyuki K, Xu B and Yamashita S 2010 Opt. Express 18 23054 [20] Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816 [21] Kashiwagi K and Yamashita S 2009 Opt. Express 17 18364 [22] Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 IEEE J. Lightwave Technol. 22 51 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|