Chin. Phys. Lett.  2013, Vol. 30 Issue (5): 052103    DOI: 10.1088/0256-307X/30/5/052103
NUCLEAR PHYSICS |
The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation
YANG Ding1,2, CAO Li-Gang3,4, MA Zhong-Yu2**
1School of Science, Communication University of China, Beijing 100024
2China Institute of Atomic Energy, Beijing 102413
3Center of Theoretical Nuclear Physics, National Laboratory of Heavy Collision, Lanzhou 730000
4Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
Cite this article:   
YANG Ding, CAO Li-Gang, MA Zhong-Yu 2013 Chin. Phys. Lett. 30 052103
Download: PDF(671KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The isoscalar giant dipole resonance (ISGDR) in nuclei is studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. We employ different type interactions (NL1, NL3, NL3*, NL4, TM1, NLSH and PK1) corresponding to incompressibilities in the range 200–360 MeV. The results are discussed in comparison with the existing experimental data. It is found that the term η= 5/3<r2> can remove spurious components from the admixture of the center of mass state perfectly. The ISGDR distribution has two components, the lower-energy component and the higher-energy component. There is a large amount of very sharp peaks in the lower-energy region in RCRPA calculations. Only the higher-energy component is sensitive to the value of nuclear incompressibility employed in the calculations; the position of the lower-energy component is completely independent of the nuclear incompressibility Knm.

Received: 14 December 2012      Published: 31 May 2013
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  24.30.Cz (Giant resonances)  
  21.65.-f (Nuclear matter)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/5/052103       OR      https://cpl.iphy.ac.cn/Y2013/V30/I5/052103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Ding
CAO Li-Gang
MA Zhong-Yu

[1] Stringari S 1982 Phys. Lett. B 108 232
[2] Deal T J 1973 Nucl. Phys. A 217 210
[3] Harakeh M N 1980 Phys. Lett. B 90 13
Harakeh M N and Dieperink A EL 1981 Phys. Rev. C 23 2329
[4] Giai N V and Sagawa H 1981 Nucl. Phys. A 371 1
[5] Dumitrescu T S and Serr F E 1983 Phys. Rev. C 27 811
[6] Morsch H P, Rogge M, Turek P and Mayerboricke C 1980 Phys. Rev. Lett. 45 337
[7] Djalali C, Marty N, Morlet M and Willis A 1982 Nucl. Phys. A 380 1
[8] Adams G S, Carey T A, McClelland J B, Moss J M, Seestrom-Morris S J and Cook D 1986 Phys. Rev. C 33 2054
[9] Davis B F et al 1994 Nucl. Phys. A 569 325
Davis B F et al 1996 Nucl. Phys. A 599 277
[10] Clark H L et al 1999 Nucl. Phys. A 649 57
[11] Clark H L et al 2001 Phys. Rev. C 63 031301(R)
[12] Brandenberg S et al 1987 Nucl. Phys. A 466 29
[13] Hamamoto I and Sagawa H 2002 Phys. Rev. C 66 044315
[14] Colo G et al 2000 Phys. Lett. B 485 362
[15] Piekarewicz J 2000 Phys. Rev. C 62 051304(R)
Piekarewicz 2001 Phys. Rev. C 64 024307
[16] Vretenar D et al 2002 Phys. Rev. C 65 021301(R)
[17] Shlomo S and Sanzhur A I 2002 Phys. Rev. C 65 044310
[18] Gorelik M L and Urin M H 2001 Phys. Rev. C 64 047301
[19] Abrosimov V I et al 2002 Nucl. Phys. A 697 748
[20] Uchida M et al 2004 Phys. Rev. C 69 051301(R)
[21] Ring P et al 2001 Nucl. Phys. A 694 249
[22] Ma Z Y et al 2001 Nucl. Phys. A 686 173
Ma Z Y 1999 Commun. Theor. Phys. 32 493
[23] Ma Z Y et al 2002 Nucl. Phys. A 703 222
[24] Piekarewicz J 2001 Phys. Rev. C 64 024307
[25] Wehrberger K 1993 Phys. Rep. 225 273
[26] Yang D et al 2009 Chin. Phys. Lett. 26 022101
[27] Yang D, Cao L G and Ma Z Y 2010 Commun. Theor. Phys. 53 716
[28] Yang D, Cao L G and Ma Z Y 2010 Commun. Theor. Phys. 53 723
[29] Daoutidis J and Ring P 2009 Phys. Rev. C 80 024309
[30] Fetter A L and Walecka J D 1971Quantum Theory of Many-Particle System (New York: McGraw-Hill)
[31] Hamamoto I, Sagawa H and Zhang X Z 1996 Phys. Rev. C 53 765
Hamamoto I and Sagawa H 1996 Phys. Rev. C 53 R1492
Hamamoto I and Sagawa H 1996 Phys. Rev. C 54 2369
Hamamoto I and Sagawa H 1997 Phys. Lett. B 394 1
Hamamoto I, Sagawa H and Zhang X Z 1997 Phys. Rev. C 55 2361
[32] Vretenar D, Wandelt A and Ring P 2000 Phys. Lett. B 487 334
[33] Daoutidis J, Ring P 2009 Phys. Rev. C 80 024309
[34] Giai N V and Sagawa H 1981 Nucl. Phys. A 371 1
[35] Colò G, Giai N V, Bortignon P F and Quaglia M R 1999 RIKEN Rev. 23 39
[36] Youngblood D H, Lui Y W, Clark H L, John B, Tokimoto Y and Chen X 2004 Phys. Rev. C 69 034315
[37] Colò G, Giai N V 2004 Nucl. Phys. A 731 15
[38] Shlomo S and Sanzhur A I 2002 Phys. Rev. C 65 044310
[39] Hamamoto I, Sagawa H and Zhang X Z 1998 Phys. Rev. C 57 R1064

Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 052103
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 052103
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 052103
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 052103
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Jiang Liu, Li-Gang Cao. Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei[J]. Chin. Phys. Lett., 2018, 35(6): 052103
[6] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Li-Gang Cao. Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne[J]. Chin. Phys. Lett., 2017, 34(8): 052103
[7] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 052103
[8] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 052103
[9] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 052103
[10] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 052103
[11] S. Unlu. Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State[J]. Chin. Phys. Lett., 2014, 31(04): 052103
[12] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 052103
[13] TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao. Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional[J]. Chin. Phys. Lett., 2013, 30(1): 052103
[14] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 052103
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 052103
Viewed
Full text


Abstract