THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
The Quark Number Susceptibility of QCD at Finite Temperature and Chemical Potential |
ZHU Hui-Xia1,2, SUN Wei-Min1,3,4, ZONG Hong-Shi1,3,4 |
1Department of Physics, Nanjing University, Nanjing 210093 2The College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000 3Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093 4State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
ZHU Hui-Xia, SUN Wei-Min, ZONG Hong-Shi 2013 Chin. Phys. Lett. 30 051201 |
|
|
Abstract We calculate the quark number density and quark number susceptibility (QNS) of QCD at finite chemical potential μ and finite temperature T in the framework of a new nonperturbative QCD model. Analysis and discussions of the calculated results of the QNS are given. It is found that the quark number density has a singularity when μ comes close to a critical value μ0, and the QNS χ(μ,T) becomes discontinuous at some values of T. At high temperature the QNS approaches the free quark gas result, while at very low temperature the QNS equals zero. Importantly, the QNS shows a sudden increase near some temperature (T~120 MeV), which may be regarded as the signal of a crossover.
|
|
Received: 23 October 2012
Published: 31 May 2013
|
|
|
|
|
|
[1] Gottlieb S, Liu W, Toussaint D, Renken R L and Sugar R L 1987 Phys. Rev. Lett. 59 2247 [2] McLerran L 1987 Phys. Rev. D 36 3291 [3] Gavai R V, Potvin J and Sanielevici S 1989 Phys. Rev. D 40 2743 [4] Kunihiro T 1991 Phys. Lett. B 271 395 [5] Jeon S and Koch V 2000 Phys. Rev. Lett. 85 2076 [6] Asakawa M, Heinz U and Müller B 2000 Phys. Rev. Lett. 85 2072 [7] Prakash M et al 2002 Phys. Rev. C 65 034906 [8] Gottlieb S, Liu W, Renken R L, Sugar R L and Toussaint D 1988 Phys. Rev. D 38 2888 [9] Gavai R V and Gupta S 2001 Phys. Rev. D 64 074506 [10] Gavai R V and Gupta S 2002 Phys. Rev. D 65 094515 [11] Gavai R V, Gupta S and Majumdar P 2002 Phys. Rev. D 65 054506 [12] Allton C R, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E and Schmidt C 2003 Phys. Rev. D 68 014507 [13] Allton C R, D?ring M, Ejiri S, Hands S J, Kaczmarek O, Karsch F, Laermann E and Redlich K 2005 Phys. Rev. D 71 054508 [14] Sasaki C, Friman B and Redlich K 2007 Phys. Rev. D 75 054026 [15] Blaizot J P, Iancu E and Rebhan A 2001 Phys. Lett. B 523 143 [16] Chakraborty P, Mustafa M G and Thoma M H 2002 Eur. Phys. J. C 23 591 [17] Blaizot J P, Iancu E and Rebhan A 2003 Eur. Phys. J. C 27 433 [18] Jiang Y, Zhu H X, Sun W M and Zong H S 2010 J. Phys. G 37 055001 [19] Jiang Y, Li H, Huang S X, Sun W M and Zong H S 2010 J. Phys. G 37 105004 [20] Haque N, Mustafa M G and Thoma M H 2011 Phys. Rev. D 84 054009 [21] He M, He D K, Feng H T, Sun W M and Zong H S 2007 Phys. Rev. D 76 076005 [22] He M, Li J F, Sun W M and Zong H S 2009 Phys. Rev. D 79 036001 [23] He D K, Ruan X X, Jiang Y, Sun W M and Zong H S 2009 Phys. Lett. B 680 432 [24] Sun W M and Zong H S 2007 Int. J. Mod. Phys. A 22 3201 [25] He M, Sun W M, Feng H T and Zong H S 2007 J. Phys. G 34 2655 [26] Zong H S, Chang L et al 2005 Phys. Rev. C 71 015205 [27] Hou F Y, Chang L, Sun W M, Zong H S and Liu Y X 2005 Phys. Rev. C 72 034901 [28] Feng H T, Zong H S et al 2006 Phys. Rev. D 73 016004 [29] Roberts C D and Schmidt S M 2000 Prog. Part. Nucl. Phys. 45 S1-S103 [30] Baschke D, Roberts C D and Schmidt S M 1998 Phys. Lett. B 425 232 [31] Zong H S and Sun W M 2008 Int. J. Mod. Phys. A 23 3591 [32] Bhagwat M S, Pichowsky M A and Tandy P C 2003 Phys. Rev. D 67 054019 [33] Alkofer R, Detmold W, Fischer C S and Maris P 2004 Phys. Rev. D 70 014014 [34] Roberts C D 1996 Nucl. Phys. A 605 475 [35] Larsson T I 1985 Phys. Rev. D 32 956 [36] Kapusta J I 1989 Finite Temperature Field Theory (Cambridge: Cambridge University Press) [37] Zong H S and Sun W M 2008 Phys. Rev. D 78 054001 [38] Yan Y, Cao J, Luo X L, Sun W M and Zong H S 2012 Phys. Rev. D 86 114028 [39] Yan Y, Cao J, Luo X L, Sun W M and Zong H S 2012 Chin. Phys. Lett. 29 101201 [40] Halasz M A et al 1998 Phys. Rev. D 58 096007 [41] Gottlieb S et al 1997 Phys. Rev. D 55 6852 [42] Bernard C et al 1996 Phys. Rev. D 54 4585 [43] Jiang Y, Luo L J and Zong H S 2011 J. High Energy Phys. 1102 066 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|