Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 037803    DOI: 10.1088/0256-307X/30/3/037803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Large Active Area AlGaN Solar-Blind Schottky Avalanche Photodiodes with High Multiplication Gain
LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le, JIANG Hao**
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275
Cite this article:   
LI Jian-Fei, HUANG Ze-Qiang, ZHANG Wen-Le et al  2013 Chin. Phys. Lett. 30 037803
Download: PDF(603KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the fabrication and performance of solar-blind AlGaN Schottky avalanche photodiodes grown on sapphire substrates. An increased active donor density is found near the surface, leading to an enhanced electric field adjacent to the Schottky electrode. Multiplication gain over 2000 has been achieved in the fabricated devices with a mesa diameter of 200 μm. The measured dark IV curves at different temperatures show strong temperature dependence, suggesting that the gain mechanism in our devices is primarily due to impact ionization. Peak responsivity of 66.3 mA/W is obtained at 260 nm and at zero bias, corresponding to an external quantum efficiency of 31.6%.
Received: 07 December 2012      Published: 29 March 2013
PACS:  78.66.Fd (III-V semiconductors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/037803       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/037803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jian-Fei
HUANG Ze-Qiang
ZHANG Wen-Le
JIANG Hao
[1] Tut T, Gokkavas M, Inal A and Ozbay E 2007 Appl. Phys. Lett. 90 163506
[2] McClintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
[3] Sun L, Chen J L, Li J F and Jiang H 2010 Appl. Phys. Lett. 97 191103
[4] Jiang H, Egawa T, Hao M and Liu Y 2005 Appl. Phys. Lett. 87 241911
[5] Jiang H and Egawa T 2007 Appl. Phys. Lett. 90 121121
[6] Kotani J, Kaneko M, Hasegawa H and Hashizume T 2006 J. Vac. Sci. Technol. B 24 2148
[7] Bhattacharya P 1994 Semiconductor Optoelectronic Devices (New Jersey: Prentice Hall) p 358
[8] Suzuki M, Uenoyama T and Yanase A 1995 Phys. Rev. B 52 8132
[9] Sze S M and Ng Kwok K 2007 Physics of Semiconductor Devices 3nd edn (New Jersey: John Wiley & Sons) chap 13 p 677
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 037803
[2] Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang. Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(10): 037803
[3] CHAI Xu-Zhao, ZHOU Dong, LIU Bin, XIE Zi-Li, HAN Ping, XIU Xiang-Qian, CHEN Peng, LU Hai, ZHANG Rong, ZHENG You-Dou. Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN[J]. Chin. Phys. Lett., 2015, 32(09): 037803
[4] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 037803
[5] HE Su-Ming, LUO Xiang-Dong, ZHANG Bo, FU Lei, CHENG Li-Wen, WANG Jin-Bin, LU Wei. An Improvement on the Junction Temperature Measurement of Light-Emitting Diodes by using the Peak Shift Method Compared with the Forward Voltage Method[J]. Chin. Phys. Lett., 2012, 29(12): 037803
[6] DING Yu, LIU Bin, TAO Tao, LI Yi, ZHANG Zhao, ZHANG Rong, XIE Zi-Li, ZHAO Hong, GU Shu-Lin, LV Peng, ZHU Shi-Ning, ZHENG You-Dou. In-Plane Optical Anisotropy of a-Plane GaN Film on r-Plane Sapphire Grown by Metal Organic Chemical vapour Deposition[J]. Chin. Phys. Lett., 2012, 29(10): 037803
[7] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 037803
[8] ZHENG Ji-Yuan, WANG Lai, HAO Zhi-Biao, LUO Yi, WANG Lan-Xi, CHEN Xue-Kang. A GaN p–i–p–i–n Ultraviolet Avalanche Photodiode[J]. Chin. Phys. Lett., 2012, 29(9): 037803
[9] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Enhanced Light Output of InGaN-Based Light Emitting Diodes with Roughed p-Type GaN Surface by Using Ni Nanoporous Template[J]. Chin. Phys. Lett., 2012, 29(9): 037803
[10] TENG Long, ZHANG Rong, XIE Zi-Li, TAO Tao, ZHANG Zhao, LI Ye-Cao, LIU Bin, CHEN Peng, HAN Ping, ZHENG You-Dou. Raman Scattering Study of InxGa1−xN Alloys with Low Indium Compositions[J]. Chin. Phys. Lett., 2012, 29(2): 037803
[11] WANG Fei, **, ZHANG Xin-Liang, YU Yu, XU En-Ming . Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter[J]. Chin. Phys. Lett., 2011, 28(6): 037803
[12] GAO Bo**, LIU Hong-Xia, WANG Shu-Long . AlGaN/GaN Ultraviolet Detector with Dual Band Response[J]. Chin. Phys. Lett., 2011, 28(5): 037803
[13] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 037803
[14] WANG Hai-Li, XIONG Yong-Hua, HUANG She-Song, NI Hai-Qiao, HE Zhen-Hong, DOU Xiu-Ming, NIU Zhi-Chuan. Photoluminescence of Charged Low-Density InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2009, 26(10): 037803
[15] LU Hui-Min, CHEN Gen-Xiang, JIAN Shui-Sheng. Design of Phosphor-Free Single-Chip White Light-Emitting Diodes Using InAlGaN Irregular Multiple Quantum Well Structures[J]. Chin. Phys. Lett., 2009, 26(8): 037803
Viewed
Full text


Abstract