Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 036101    DOI: 10.1088/0256-307X/30/3/036101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
High Response in aTellurium-Supersaturated Silicon Photodiode
WANG Xi-Yuan1, HUANG Yong-Guang1**, LIU De-Wei1,2, ZHU Xiao-Ning1, ZHU Hong-Liang1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
2Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002
Cite this article:   
WANG Xi-Yuan, HUANG Yong-Guang, LIU De-Wei et al  2013 Chin. Phys. Lett. 30 036101
Download: PDF(643KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single crystalline silicon supersaturated with tellurium are formed by ion implantation followed by excimer nanosecond pulsed laser melting (PLM). The lattice damaged by ion implantation is restored during the PLM process, and dopants are effectively activated. The hyperdoped layer exhibits high and broad optical absorption from 400 to 2500 nm. The n+p photodiodes fabricated from these materials show high response (6.9 A/W at 1000 nm) with reverse bias 12 V at room temperature. The corresponding cut-off wavelength is 1258 nm. The amount of gain and extended cut-off wavelength both increase with increasing reverse bias voltage; above 100% external quantum efficiency is observed even at a reverse bias of 1 V. The cut-off wavelength with 0 V bias is shorter than the commercial silicon detector. This implies that the Burstein-Moss shift is due to hyperdoping. The amount of the extended cut-off wavelength increases with increasing reverse bias voltage, suggesting existence of the Franz–Keldysh effect.
Received: 28 November 2012      Published: 29 March 2013
PACS:  61.72.uf (Ge and Si)  
  61.72.U  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/036101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/036101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xi-Yuan
HUANG Yong-Guang
LIU De-Wei
ZHU Xiao-Ning
ZHU Hong-Liang
[1] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley-Interscience)
[2] Csutak S M et al 2002 IEEE Photon. Technol. Lett. 14 516
[3] Wu C et al 2001 Appl. Phys. Lett. 78 1850
[4] Younkin R et al 2003 J. Appl. Phys. 93 2626
[5] Sheehy M A et al 2006 Mater. Sci. Eng. B 137 289
[6] Sher M J et al 2011 Mater. Res. Bull. 36 439
[7] Tabbal M et al 2010 Appl. Phys. A 98 589
[8] Kim T G et al 2006 Appl. Phys. Lett. 88 241902
[9] Bob B P et al 2010 J. Appl. Phys. 107 123506
[10] Pan S H et al 2011 Appl. Phys. Lett. 98 121913
[11] Crouch C H et al 2004 Appl. Phys. A 79
[12] Tull B R et al 2009 Appl. Phys. A 96 327
[13] Shao H et al 2012 Europhys. Lett. 99 46005
[14] S ánchez K et al 2010 Phys. Rev. B 82 165201
[15] Carey J E et al 2005 Opt. Lett. 30 1773
[16] Huang Z H et al 2006 Appl. Phys. Lett. 89 033506
[17] Said A J et al 2011 Appl. Phys. Lett. 99 073503
[18] Winkler M T et al 2011 Phys. Rev. Lett. 106 178701
[19] Ertekin E et al 2012 Phys. Rev. Lett. 108 026401
[20] Ziegler J F et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818
[21] Boyd I W and Wilson J I B 1983 Nature 303 481
[22] Recht D et al 2012 Appl. Phys. Lett. 100 112112
[23] Grimmeiss H G et al 1981 Phys. Rev. B 24 4571
[24] Sheehy M A 2004 Ph. D. Thesis (Harvard University)
[25] Voutsas A T et al 1995 J. Appl. Phys. 78 6999
[26] Hu S X et al 2012 Semicond. Sci. Technol. 27 102002
[27] Burstein E 1954 Phys. Rev. 93 632
[28] Franz W 1958 Z. Naturforsch. A: Phys. Sci. 13 484
[29] Chang C et al 1985 J. Appl. Phys. 57 302
Related articles from Frontiers Journals
[1] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 036101
[2] Yi-Ze Wang, Chang Liu, Jian-Hui Cai, Qiang Liu, Xin-Ke Liu, Wen-Jie Yu, Qing-Tai Zhao. Experimental $I$–$V$ and $C$–$V$ Analysis of Schottky-Barrier Metal-Oxide-Semiconductor Field Effect Transistors with Epitaxial NiSi$_{2}$ Contacts and Dopant Segregation[J]. Chin. Phys. Lett., 2017, 34(7): 036101
[3] Jin-Feng Feng, Chang Liu, Wen-Jie Yu, Ying-Hong Peng. Oxygen Scavenging Effect of LaLuO$_{3}$/TiN Gate Stack in High-Mobility Si/SiGe/SOI Quantum-Well Transistors[J]. Chin. Phys. Lett., 2016, 33(05): 036101
[4] LIU Chang, YU Wen-Jie, ZHANG Bo, XUE Zhong-Ying, WU Wang-Ran, ZHAO Yi, ZHAO Qing-Tai. Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis[J]. Chin. Phys. Lett., 2014, 31(10): 036101
[5] YU Wen-Jie, ZHANG Bo, LIU Chang, XUE Zhong-Ying, CHEN Ming, ZHAO Qing-Tai. Mobility Enhancement and Gate-Induced-Drain-Leakage Analysis of Strained-SiGe Channel p-MOSFETs with Higher-κ LaLuO3 Gate Dielectric[J]. Chin. Phys. Lett., 2014, 31(1): 036101
[6] Rehana Mustafa, S. Ahmed, E. U. Khan. Formation of Co-implanted Silicon Ultra-Shallow Junctions for Low Thermal Budget Applications[J]. Chin. Phys. Lett., 2013, 30(1): 036101
[7] KE Wei-Wei, FENG Xue**, HUANG Yi-Dong. Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering[J]. Chin. Phys. Lett., 2012, 29(1): 036101
[8] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 036101
[9] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 036101
[10] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 036101
Viewed
Full text


Abstract