Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 031201    DOI: 10.1088/0256-307X/30/3/031201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
The Statistical Origin of Constituent-Quark Scaling in QGP Hadronization
TANG Ze-Bo1**, YI Li2, RUAN Li-Juan3, SHAO Ming1, LI Cheng1, CHEN Hong-Fang1, Bedanga Mohanty4, XU Zhang-Bu1
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2Department of Physics, Purdue University, West Lafayette, Indiana 47907, U.S.A.
3Physics Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.
4School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005, India
Cite this article:   
TANG Ze-Bo, YI Li, RUAN Li-Juan et al  2013 Chin. Phys. Lett. 30 031201
Download: PDF(667KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonextensive statistics in a blast-wave model is implemented to describe the identified hadron production in relativistic p+p and nucleus-nucleus collisions. Incorporating the core and corona components within the TBW formalism allows us to describe simultaneously some of the major observations in hadronic observables at the Relativistic Heavy-Ion Collider (RHIC): the amount of constituent quark scaling (NCQ), the large radial and elliptic flow, the effect of gluon saturation, and the suppression of hadron production at high transverse momentum (pT) due to jet quenching. In this formalism, the NCQ scaling at the RHIC appears as a consequence of a non-equilibrium process. Our study also provides concise reference distributions with a least χ2 fit of the available experimental data for future experiments and models.
Received: 03 December 2012      Published: 29 March 2013
PACS:  12.38.Mh (Quark-gluon plasma)  
  12.40.Ee (Statistical models)  
  25.75.Dw (Particle and resonance production)  
  25.75.Ld (Collective flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/031201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/031201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Ze-Bo
YI Li
RUAN Li-Juan
SHAO Ming
LI Cheng
CHEN Hong-Fang
Bedanga Mohanty
XU Zhang-Bu
[1] Adams J et al 2005 Nucl. Phys. A 757 102
[2] Adams J et al 2004 Phys. Rev. Lett. 92 112301
[3] Kolb P F and Heinz U W 2003 arXiv:nucl-th/0305084
[4] Lacey R and Taranenko A 2006 PoS CFRNC 2006 021
[5] Schnedermann E, Sollfrank J and Heinz U W 1993 Phys. Rev. C 48 2462
[6] Retiere F and Lisa M 2004 Phys. Rev. C 70 044907
[7] Tang Z et al 2009 Phys. Rev. C 79 051901
[8] Muller B 2005 Nucl. Phys. A 750 84
[9] Liao J and Koch V 2009 Phys. Rev. Lett. 103 042302
[10] Song H, Bass S A and Heinz U W 2011 Phys. Rev. C 83 024912
[11] Shao M et al 2010 J. Phys. G 37 085104
[12] Drescher H J et al 2002 Phys. Rev. C 65 054902
[13] Tsallis C 1988 J. Stat. Phys. 52 479
[14] Wilk G and Wlodarczyk Z 2000 Phys. Rev. Lett. 84 2770
[15] Biro T S et al 2009 Eur. Phys. J. A 40 325
[16] Cleymans J et al 2009 J. Phys. G 36 064018
[17] Lai H L et al 1995 Phys. Rev. D 51 4763
[18] Wilk G and Wlodarczyk Z 2009 Eur. Phys. J. A 40 299
[19] Abelev B I et al 2009 Phys. Rev. C 79 034909
[20] Wong C Y 2008 Phys. Rev. C 78 054902
[21] Bearden I et al 2005 Phys. Rev. Lett. 94 162301
[22] Schaffner-Bielich J et al 2002 Nucl. Phys. A 705 494
[23] Kharzeev D et al 2003 Phys. Rev. D 68 094013
[24] Adams J et al 2005 Phys. Rev. C 71 064902
[25] Abelev B I et al 2007 Phys. Rev. Lett. 99 112301
[26] Abelev B I et al 2007 Phys. Rev. C 75 064901
[27] Abelev B I et al 2006 Phys. Rev. Lett. 97 152301
[28] Abelev B I et al 2007 Phys. Lett. B 655 104
[29] Adams J et al 2005 Phys. Lett. B 616 8
[30] Adams J et al 2005 Phys. Lett. B 612 181
[31] Adams J et al 2007 Phys. Rev. Lett. 98 062301
[32] Adams J et al 2006 Phys. Lett. B 637 161
[33] Adams J et al 2005 Phys. Rev. C 72 014904
[34] Abelev B I et al 2008 Phys. Rev. C 77 054901
[35] Adams J et al 2004 Phys. Rev. Lett. 92 092301
[36] Adler S S et al 2007 Phys. Rev. C 75 024909
[37] Adler S S et al 2007 Phys. Rev. C 75 051902
[38] Adare A et al 2007 Phys. Rev. Lett. 98 232002
[39] Adler S S et al 2004 Phys. Rev. C 69 034909
[40] Adare A et al 2010 Phys. Rev. Lett. 105 142301
[41] Adare A et al 2011 Phys. Rev. D 83 052004
[42] Bai Y T 2007 Ph. D. Dissertation (NIKHEF and Utrcht University)
[43] Liao J and ShruYak E 2009 Phys. Rev. Lett. 102 202302
[44] Lai H L et al 2010 Phys. Rev. D 82 074024
[45] Greco V et al 2003 Phys. Rev. Lett. 90 202302
[46] Hwa R and Yang C B 2004 Phys. Rev. C 70 024905
[47] He M et al 2010 Phys. Rev. C 82 034907
[48] Maroney O J E 2009 Phys. Rev. E 80 061141
Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 031201
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 031201
[3] Jing-Ya Zhang, Luan Cheng. Strong Interaction Effect on Jet Energy Loss with Detailed Balance[J]. Chin. Phys. Lett., 2017, 34(10): 031201
[4] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 031201
[5] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 031201
[6] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 031201
[7] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 031201
[8] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 031201
[9] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 031201
[10] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 031201
[11] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 031201
[12] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 031201
[13] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 031201
[14] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 031201
[15] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 031201
Viewed
Full text


Abstract